e e M . R — . e R e — ————

S s e i

A T Ty
-

DUNFIELD DEVELOPMENT SYSTEMS
P.0. BOX 31044

NEPEAN ONT. CANADA - -
K28 8 .s '

M6809PM (AD) Hr

MC6809-MC6809E
8-BIT MICROPROCESSOR

PROGRAMMING MANUAL

Original Issue: March 1, 1981

©MOTOROLA INC., 1981

Paragraph No.

(R SNIN I I
bWk =

N
[FL I & Y

_L_l—L—L-A_L-_l._I.-_L-—L:qL'_L._L'_l._L'_L-—l._.L_L'_l._L_L-—L...-L-_L._l.(ob:-q.a).(rl:ﬁ.b)i\)._s
W=

- ek ek ek ek ek kb ek ek L = e G LU OO0

et T T N Vs Wit N o S S S S S S S O W Y S S WP W Y ST W WY
ComoNIORWN D oL

W N =

TABLE OF CONTENTS

Title Page No.
SECTION 1
GENERAL DESCRIPTION
INEFOAUCHION ..t s e ae e s et esa st e s 1-1
FOATUIES ..ottt e ettt e e re et es e s e sr et e et e e e e neemens 1-1
SOftWANE FOATUIESeeceeeest e et es st e ee s et eseeeaeeeessa e et aneas 1-2
Programming MO ...ttt s ese s eets st asmesesssesnasenans 1-3
INAEX REGISTRIS (X, Y} oot sse e bssse st e eeseee s eeeneeeenae e sannesteratesanans 1-3
Stack Pointer ReGIStErs (U, S) ... cercevcesiieeceeresesessesea s csssscosesessesnanees 1-3
Program GOoUNLEr (PC) ...t sre s s sas s ssessn st sesnesesseaseemenas 1-4
Accumulator RegiSters (A, B, D)cciiniiieeriieceerreesseesersssssessisssorsessssssesesssssssnens 1-4
Direct Page RegQiSter (DP) et sre s e n s sresseen e e senes 1-4
Condition Code ReQiSter (CC)cccocvuieeiiecee e eeeeeeeeeeeaeeeeesessessssessersssssssssanas 1-4
Condition Code BitSc.cceirecrrsrnerccerite e e es e st e e e e 1-5
Half Carry (H), Bit 5.....ovviueeeeiceieereeciericssnessssconssteseseesessssssesssaessssssssessss 1-5
Negative (N), Bit 3.ttt esas s stseeseee s ee e senearrn 1-5
ZETO (Z), Bt 2.t sres s rasss st o s e e en e e ne e e eenaren 1-5
OVEIfIOW (V), Bt 1 .ottt ettt aann 1-5
Carry (C), Bit D ...t ie et e s g s st st s 1-6
Interrupt Mask Bits and Stacking Indicator...........cccveeivececnnceceeenrecensceesnne 1-5
Fast Interrupt Request Mask (F), Bit 6........cccoeveveeeevcreeienceveenicssenssnenecenens 1-5
Interrupt Request Mask {1), Bit 4cccecceeeeieeeeecree st eese s eeecenens 1-5
Entire FIAG (E), Bit 7coeeccceecccrieic ettt s eeee s ensee e e nenenen 1-6
Pin Assignments and Signal DescCription..........ccccevioierinerrereeeeeessessesanns 1-6
- MOBBOD CIOCKScoeireerrieieierir et ettt s s e r s s s srees s ae e ssse e e nen e 1-6
OSCIHAtOr (EXTAL, XTAL)..coviertirnieereescessresssressmscsessssssseneeressesssemsssessesssasans 16
Enable (E)............. Stt e tneasanneneaaAareesRTee st eeranrreanaaLan anea s RnAee s abassaentnnnenneannane 1-7
QUArature (Q)coveerrmrcercieneinrerreere e s s e se e sr s e r e s enn s e seas 1-7
MCBBO9E ClOCKS (E and Q) ...cccocerecorrieririnitecmne s seress s cos s e esess eneeaene 1-7
Three State Control (TSC) (MCBBOGE)ooeceerrerreerresesesesseesessssseesesssases 1.7
Last Instruction Cycle (LIC) (MCBBOIE)ecoeeereecrrereeeeirersasecossseeorseseseseens 1-7
AdAress BUS (AD-A15)......c ettt e s s sae s sresar et s e s 1-7
Data BuS (DO-D7)....c.coecrrcrnriieniie s sseis s sssrcssssstsbsssmesesmsasamssssseseessensaseneses 1-7
REAAIWIIIE (RIW ...ttt stsas st eeeseen et eeneseeeeenaereas 1-8
Processor State INAICAtors (BA, BS)covvivceeieieeircrseoreseesseseesessassssssssssssens 1-8
N Lol 1 T OO OSSO 1-8
Interrupt or Reset ACKNOWIEdge............cccoveveriiimice s eres s cornenens 1-8
SYNC ACKNOWIEAGE......oece et se s sesr s e eessstassnenessenesee e 1-8
iii

Paragraph No.

1.11.84
1.11.9
1.11.10
1.11.10.1
1.11.10.2
1.11.10.3
1111
1.11.12
1.11.13
1.11.14
1.11.15
1.11.16

21

2.2
2.2.1
2.2.2
223
224
225
2.2.5.1
2.25.2
2253
2254
2255
2256
2.2.6

3.1
3.2
33
3.4
35

TABLE OF CONTENTS

(CONTINUED)
Titie Page No
HAIH/BUS GFANE ..oooviiiecetiiereerstesrearessarsaeraatossstsmssmssssssssbaesssnsvasnsasnssasnassssass 1-8
RESOT (RESET) .o e s nists e msmss en e g s e as st s s s b g e 19
13T L [G OO PP O T PP RSP 1-9
Non-Maskable interrupt (NMI) ..o, 1-9
Fast Interrupt Request (FIRQ)........cccoerinmniinssecsiinnisenee 19
Interrupt Request (IRQ).......ccovvieinsiitir s st s 19
Memory Ready (MRDY) (MCB809).......c..cciviimenrmmmnmemisiconnmansn it sannss 1-9
Advanced Valid Memory Address (AVMA} (MCE809E)...........ccerrrinnrcnne 1-10
HAH (HALT) co.eeceiicaerreessesaseseessscomstsssssmmsssnsststsasssseasasssosnesarmmsessomsssssasssssssassnnnan 1-10
Direct Memory Access/Bus Request (DMA/BREQ) (MC6809) 1-10
BUSY (MCBBOOE)ccoeriiiriiriinaniii st ctesssnnessssresssonr s mom sttt 1-10
P OWET et eeeteserriaseieeriaeesssissbrantssntsanrave s s eeaes s rrassamn sk d O AT Ty AeEEr et e aa s e aa e e R aa R Erans 1-11
SECTION 2
ADDRESSING MODES
INEFOAUCEION ...ecvieerrerece e ircbiiaevrraeersse st aassre s s se s re s b soarvannesnmenannsatiavnsssassansnstavess 2-1
AdAressing MOGeS. ..o ese st sarsas s s sasasasese 2-1
1T 0= 1 | O TP OO O OO PRSPPI 21
181 T0 8= e 1T 1 - T OO OO PP YPN 21
EXTRNAOU. .. . ooiiieeeireeeie e it ecrsassresserersaessasssmseseenanesbessstssrtsnnnasmanstsestasrrassarsameasseas 2-2
DIFECE oo eeeicaesicaeersenerssesrsseessransssnesaseesaseassasasassirastsesbnesannnnnsnessasnesenssassraansrasnsnnssss 2-2
IEEXEU ...oeeiiecersrrneresesissaarssnsvasmerassessasaasasssssmesisas iR eesarnasnonanasserRTansarmnsrne st asian 2-2
Constant Offset from Register ...t 2-2

Accumulator Offset from ReGISEE........ccerrrcimmeenesmniinsiise s s 03
Autoincrement/Decrement from RegiSTer.......occuumemenrcsiissrmivessnsnean 23

INAITBCRION e e cctierrereerreeeraeessrrsarsemme s meestssbassnsesanensbasa R a s rp s mnsasrashdsn b e annsaness 2-4
EXtENAEd INAITBOT ..coceevecricrrveeerrnreeer e sorsrse s s sssanssasssansnsssannsspresesanasasssssans 24
‘Program Counter Relative ..ot 2-4
Branch RelatiVe ..o trceerirecrreee o tinie s ae s s smasssss s ses s snssmansise s se 24
SECTION 3
INTERRUPT CAPABILITIES

IO UGCTION . vreeeeeecitieessiesiisssrs s eraissb s mnesrantasensssnsssssasasisersrnasassnnsasseastassnasassennssers 31
Non-Maskable Interrupt (NMI) ...t 341
Fast Maskable Interrupt Request (FIRQ)........cconeeccninnensniniens 3-2
Normal Maskable Interrupt Request (IRQ)cccvmerrenceri i 3-2

Software Interrupts (SWI, SWI2, SWI3)ccimmiiinnrmesnnnnncnstiissens 3-2

A

Paragraph No.

4.1
411
412
4.1.2.1
4122
41.3
42
421
4.2.1.1
4.2.1.2
4213
422
423
4.2.4
4.2.5
426
4.2.6.1
426.2
4263
4.2.7
4.3

4.4

A
A2

B.1
B.2
B.3
B.4

TABLE OF CONTENTS

(CONCLUDED)
Title Page No.
SECTION 4
PROGRAMMING
(3307 To [FTo3 4 T] TR OO USRI 4-1
POSHION-INAEPENUENCE ...t ir e e sme st s sarsensreene s 4-1
MOdUIAr Programming ... cereerseecvevserseessiissnsssassssessssesssssessesassessasssans 4-1
[Tt LR Lo - To [= 2O OO 41
GlODAI SEOrAGR ... ettt e rr s ss e e sa s s asas st sbs st st e emesenmenenne 4-2
ReeMranCy/RECUISION ... riiience s eraes s nesse e s ese e rsassr o nassansane 4-2
MBB0O Capabilities.cooc s e 4-2
MOAUIE CONSLIUCHION ...t sassresss s s b s erbsee s e emmeen 4-2
ParAMEEEIS ..t re s s s ae e a s nen s e n e 4-3
LOGCAI STOTAQE........c et ser et ea s e sassae e re e aeva v e tosana s b smnans 43
GlODAl SLOrAQE ...t rce et ee s e st e st s ras s ses e sr e 4-3
Position-independent COdecvieniicice s s s sres s s rcssssrssssasens 4.4
Reantrant PrOQrams..........c v cessine e s ssssmsessmesssssess sssmssasans 4-5
RECUISIVE PrOOIAMScoveiiieeeecineerteecen e sas s ssssn s bessassaasss sssestenmenanesnnans 4.5
< T o T OO U 4-5
Stack Programming ... sssersessssssssssessssessssisssasssssasssesesssses 4-6
MBBO9 Stacking Operations.......ccviiiisinisne s seeessesesesesessrerssssas 4-6
SUDrouting LINKAQEccccorveiiiniiriiieiieisesess s ssssssssssnssessesesesssssesssssssassossas 4-7
SOFtWANE STACKScceecece et st as e s eme e 4-8
Real Time Programimingccicoinmireiiseiessnssesssesssssesssesssessesssessssassss sssnss 4-8
Program DOCUMENTALIONcccoecvvvmreetiiminseestis s sesese s ss s s s e ssssms s sassaesassavens 4-8
1o (g P ex o T - OO 4-9
APPENDIX A
INSTRUCTION SET DETAILS
INEPOTUCTION ..ttt e e se s e e s e sme s e e A-1
NOTALION oot s es e s s e arseesrssaena s snaten Al
Instructions {listed in alphabetical order).........ccoccirceiccvecrvn e, A-3
APPENDIX B
ASSIST09 MONITOR PROGRAM
General DesSCriptioN. ..ot e s ae v e e B-1
implementation REQUITEMENTSccceeiiiivrcenvresrcesrmiceniissniirssesvsssmssssesssesas B-1
INEEITUPE CONIIOL ...ttt st rere e e s s e se s e s e e e e e e e nessesnasesnanesasarsansnanens B-2
INIEIBHZALION ceevvrececeniti et e s sras s e sr e srnsbesReesRssben b eosssnns B-3
v

TABLE OF CONTENTS

(CONTINUED)
Paragraph No. Title Page No.
B.5 INPUL/OULPUL CONTIO ..iierruersseeeriscsmssssss b b B-4
B.6 COMMANG FOTMAL cuceiriemireereriererrreerersesamssaiossssesstsassms s bt s st s d s g s g B-4
B.7 COMIMANG LESE «eeeriisseutesereresssesereressass s saas s s snaass e s b p e s on e s EE bR LR s B-5
B.8 OGS s veeeeeeserceseseaseseeseseasearreesbosssananss s s s a o e L bR oA nEE O AT ST E LRSS R s s B-5
BREAKPOINT «.vuvureureersemresreossomssanesssntsans s b s s e s S B6
0T || VTR PP P T e I L LR B-6
DS PIAY . vereerusesersreecsnsasarssssnesnsseasrase a0 B-7
ETICOME orooseeeereeseeeeereatssessssraseaseaesssesaE b T AT e s rR s b e RS R TR SRR RS E S SRS S B-7
e T JHTTTRT USSP PR S SE I R TR B-8
;T VRO T OO RS OR ST P PR RS SRR I B LU B-8
ILEITIOTY «.evevurenransscaressessseasasessseta s s os s sE s Ao SRS B-9
N LUTE o oeeteeete s et eesseesesseeassaesasanes sareoEiaE erAae e e radgan RS a s b o bt R R A e P RS EEa SRS g B-10
10 18 1T TR SO PP A T L LR L B-10
1200 111 DTS ST SR TR LR LI B-11
REGISTON c...vureeecsceressesessrne s bbb b B-11
LA TS PP P IR T LI B-12
L T VoL SRR U U OO POV P AP Y SRR PRUTPREEEC IR IE AT B-12
YL L OO e PR R R B-13
NV TITICOW rireeieesseeasesesesseesasasasseseaseessessssasssaaa s e s eSS s SO ST AV RS R n RSP S S AR bR RS R4 B-13
B.9 T g Te T TUT U PPOT PRSI S E R R R I B-14
=174 =22 (OO P IS B SRR LL LU B-15
TN e | =2 TP SRR LRI I B-15
(¥ 10 NI 1 = TV OO TOR RO ORI YR IR S I B-16
613 110) - RSSO OO PP AR ST TR IO LC B-17
(o101 121 1 T O PR R EER R L B-17
DU T AH S oot ee e ecorereentrsseearsareaseesessas sEsR e S A AT A O LR LI PR ERER eSS SRS R R B-18
PAUSE oeeeeeteueeeeeeseesastasesrvas sesssssssasessssenes basastanebEEE IR L EL R TR T s s as SRS e B-18
PUORLE 1oeeieeeeeeeasessseestasessaseseessersasasendssasssana o e ar e b e EEE LR L LSRR AR AR RS sgR RS B-19
(=10 Y - - UTTT TR O PO P S S R B-19
POATAT coieesseeeeeeeseteetateseresasssssssssassassbsseasabestanasrstotsatisasenssaaassassassssassnsbananss B-20
LY =T.X o TSPV R PP RS R IR L LY B-21
VA =123 AU PSRRI SIS RIS B-21
| B.10 VECLOT SWAP SBIVICE urerriereesressessriessisessss bt sescbsisss bbb B-22
| A G oo eeeeteseeseras st aR RS RS E R RS bR AERRARSE S nAERR R S R 08 B-23
| F V2 1 = T O ORI RRSE LSRR S B-23
| BODTA oo tseeeeeeeseeessesststvasessssaresssasessssasssar s sama s A e RS SR o s PR R e PR S E LGRS 2 B-24
12121 0 =1 =R P OO Uy PR RIS ST LRI B-24
BOSON oot eeeeeessresassseresssssssaressnsssssssesmastsssamassbEaE s P EE e R TR e A a4 eSS b SR R e B-25
031 03 - RSOOSR PP PP SIS IR ER SR UL B-25
Fol[0) =1 =TT OO D PP PSR L B-26
L0} 01 DRSO U SO RS S R SRR T R R B-26
ol Y1 o 1K [T O OO RU PSPPI PRSI BRI B-27
[0L,Y, 1] 122U POR R PP P R T S UL LRD B-28

Vi

TABLE OF CONTENTS

(CONTINUED)
Paragraph No. Titte Page No.
LT]I I I - SR B-28
L0 0 1 0 1 s SRS B-29
L0100 T S B-29
{107 o [0 T OO SOy SR U OO RER B-30
1 L T B-30
[BT 0T I U B-31
| 2 O R B-31
11 U B-32
Y I B-32
PAUSE ... erete e ts sttt e s st s s e s e e e sans s anenesan e saeeraaseesaneesanesanneenenne B-33
L2 11 TSRO B-33
] ST I TS B-34
LY B-34
LT OO STNPO B-35
B L.ttt ee s bt as e b bs ekt e nbnthememnnn san B-35
O e a s sa b tas st et st st e et e s ntaehen e neeannenn B-36
B.11 MONION LISTING .oueriee et st e e s s s s s e s s an s B-37
, APPENDIX C
MACHINE CODE TO INSTRUCTION CROSS REFERENCE
CA (a3 (0T [V T o3 4] o TSR PROTRR C-1
APPENDIX D
PROGRAMMING AID
D.1 Ihtro’duction .. D-1
APPENDIX E
ASCIl CHARACTER SET
E.1 INEFOAUCTION et sr e es s e s sene e s eneenaes E-1
E.2 Character Representation and Code Identificationccveiiinnieninrnnnns E-1
E.3 OTo T T o T 0 T U= L =T - T U E-2
E.4 GraphiC CRArACLEIScocvcececee e terteert s ee st sesbessbbae st s s bae s aneesansesnraesaes E-2

vil

Paragraph No.

F.1
F.2

G.1

Figure No.

1.
1
1

W N -

2-1

3-1

TABLE OF CONTENTS
{(CONTINUED)

Title Page No.

APPENDIX F

OPCODE MAP

[F3 40 o (773 § [« 1 U GOy PP PR F-1
0T TeToTs T T - T2 O O OO SO F

APPENDIX G

PIN ASSIGNMENTS

13N Lo T [T o2 1o o T R PP G-1

APPENDIX H

CONVERSION TABLES
[F3Y e 7o 1771 {1+] 3 [O PP UO PO PRSP PR H-1
POWETS Of 2; POWETS OF 16 ...cuuvuiiirreervcerrreree e stcnssesansecasesmecsssnesssmnsssesissasnsssons H-1
Hexadecimal and Decimal CONVErsSioN...........ccommim s isenniessenas H-2
Converting Hexadecimal 10 DeCimalcoeeieirrivntinenee s H-2
Converting Decimal to Hexadecimalcrrncrnicnniinnninnsseeises H-2
LIST OF ILLUSTRATIONS
Title Page No.
Programming MOdel..........ccmcireniin et insass e 1-3
Condition Code REGISTENccrreerecrrcrne e st e 1-4
Processor Pin ASSIgNMENTS ecrer st sassser s ssssassensssanens 16
Postbyte Usage for EXG/TFR, PSH/PUL INStIUGHIONS ...ccceeeiiiicricenicenincinas 2-2
Interrupt Processing FIOWChATM ... s et 35
SLACKING OFAEN ... et s b 4-7
MEMOTY MAP c.eccccceetete e e ress st sb s e e s rn s et s e n s p s B-2
ASCH Character SOtcovvvvevreeerrrieerreerrrecnrisearss it eessssasassssnsssnsssssssssssnsasasaser E-1
Pin ASSIGNMENES ...coeeeieees e e cssie st n s et g b b i sa s G-1
viii

Table No.
1-1
2-1
3-1
4-1
4-2
4-3
4-4
4-5
46

A-1
A-2

B-1
B-2
B-3
CA1
D-1

E-1
E-2

F-1
F-2

H-1
H-2

LIST OF TABLES

Title Page No.
BA/BS Signal ENCOAING.......ccoiecrresir ettt smes s me e e same e s sanenas 1-8
Postbyte Usage for Indexed Addressing Modescccecenieincecncnienniennnens 2-3
Interrupt VECIOr LOCAtIONSeviiccieeccetinc s siise s ne e bne s e 3-1
INSEIUCHION SBE ...ttt s e ese s ae s e as e e varsavesraverenssssanvannes 4-9
8-Bit Accumulator and Memory INSIruCtioNSc.ccvrverrvvrieerneennee e s 4-11
16-Bit Accumulator and Memory InStructions........ccoencenreccinrcnicerc e 4-12
Index/Stack POinter INSIrUCHIONS ..o ses e raan e 4-12
BranCh INStrUCHIONS ...t m e s as e me s nne 4-13
Miscellaneous INSITUCTIONS ...ttt iiver vttt ees s s sa e as s st e s eeesann 4-13
Operation NOtALION ... rrree e sssesesaesrsssraresnsseernses A-1
Register NOLatioNn. ... ricnirs et nisesrte e risseranessiresmissastsesanee A-2
(0T aT4 1104 T o [I B-5
SOIVICES . verrccrrrererisstiee et esertseesnessanessnaessrassesasassnnessanesrtnsssnessnntissntiosstasertassns B-14
Vector Table ENtries ... et ee e e rane B-22
Machine Cade 10 Instruction Cross Reference........ceererincennsenncsneennens C-2
Programming Alcoreerieericmmneemiienisrmiceniieeriesriosnieree imssrrise s rnsas snsoes D-1
CONTOl ChATACIES ..ueeii et essieri e s st ee s aeeressebnassssbressaseansssensnsnsass E-2
Graphic CRATACEEIS ...t e e e e s e es s e saessas s b e s s s sae s sssmnans E-3
OPCOUE MAP.....eeeeeeeeeeemmeeeeeseereseeseesesessmesesenesssesseseesesseeseseesenersarennon — F-2
Indexed Addressing Mode Data..........ccovcivccccincnrsnnirs rereeranenae F-3
Powers of 2, POWers of 16.......o e e H-1
Hexadecimal and Decimal Conversion Chart........cccoovirvcrverrcerrcerreercceene H-2

iXix

ST T T A R e WO TR TR T T TR T

SECTION 1
GENERAL DESCRIPTION

1.1 INTRODUCTION

This section contains a general description of the Motorola MC6809 and MCE809E
Microprocessor Units (MPU). Pin assignments and a brief description of each input/out-
put signal are also given. The term MPU, processor, or M6809 will be used throughout this
manual to refer to both the MC6809 and MCE809E processors. When a topic relates to
only one of the processors, that specific designator (MC6809 or MCBB09E) will be used.

1.2 FEATURES

The MC8809 and MCBB0SE microprocessors are greatly enhanced, upward compatible,
computationally faster extensions of the MC6800 microprocessor.

Enhancements such as additional registers (a Y index register, a U stack pointer, and a
direct page register) and instructions {(such as MUL) simplify software design. Improved
addressing modes have aiso been implemented.

Upward compatibility is guaranteed as MC6800 assembly language programs may be
assembled using the Motorola MC6809 Macro Assembler. This code, whiie not as com-
pact as native M8809 code, is, in most cases, 100% functional.

Both address and data are available from the processor earlier in an instruction cycle
than from the MC8800 which simplifies hardware design. Two clock signals, E (the
MC6800 ¢2) and a new quadrature clock Q {which leads E by one-quarter cycle) also
simplify hardware design.

A memory ready (MRDY) input is provided on the MC6809 for working with slow
memories. This input stretches both the processor internal cycle and direct memory ac-
cess bus cycle times but aliows internal operations to continue at full speed. A direct
memory access request (BMA/BREQ) input is provided for immediate memory access or
dynamic memory refresh operations; this input halts the internal MC6809 clocks.
Because the processor’s registers are dynamic, an internal counter periodically recovers
the bus from direct memory access operations and performs a true processor refresh
cycle to allow unlimited length direct memory access operation. An interrupt
acknowledge signal is available to allow development of vectoring by interrupt device
hardware or detection of operating system calls.

1-1

Three prioritized, vectored, hardware interrupt levels are available: non-maskable, fast,
and normal. The highest and lowest priority interrupts, non-maskable and interrupt re-
quest respectively, are the normal interrupts used in the M6800 family. A new interrupt on
this processor is the fast interrupt request which provides faster service to its interrupt
input by only stacking the program counter and condition code register and then servic-
ing the interrupt.

Modern programming techniques such as position-independent, system independent,
and reentrant programming are readily supported by these processors.

A Memory Management Unit (MMU), the MCE6829, allows a M6809 based system to ad-
dress a two megabyte memory space. Note: An arbitrary number of tasks may be sup-
ported — slower — with software.

This advanced family of processors is compatiblie with all M6B00 peripheral parts.

1.3 SOFTWARE FEATURES

Some of the software features of these processors are itemized in the following
paragraphs. Programs developed for the MC6800 can be easily converted for use with the
MC6809 or MCBBOSE by running the source code through a M6809 Macro Assembler or
any one of the many cross assemblers that are available.

The addressing modes of any microprocessor provide it with the capability to efficiently
address memory to obtain data and instructions. The MC6809 and MCB808E have a ver-
satile set of addressing modes which allow them to function using modern programming
techniques.

The addressing modes and instructions of the MC6809 and MC6809E are upward com-
patible with the MCB8800. The old addressing modes have been retained and many new
ones have been added.

A direct page register has been added which allows a 256 byte “direct” page anywhere in
the 64K logical address space. The direct page register is used to hold the most-
significant byte of the address used in direct addressing and decrease the time required
for address calculation.

Branch relative addressing to anywhere in the memory map (- 32768 to + 32767) is
available.

Program counter relative addressing is also avalilable for data access as weli as branch
instructions.

The indexed addressing modes have been expanded to include:
0-, 5-, 8-, 16-bit constant offsets,
8- or 16-bit accumulator offsets,
autoincrement/decrement (stack operation).

SRR TR T SR T T T e T AR e o o

In addition, most indexed addressing modes may have an additional level of indirection
added.

Any or all registers may be pushed on to or pulled from either stack with a single instruc-
tion.

A multiply instruction is included which multipiies unsigned binary numbers in ac-
cumulators A and B and ptaces the unsigned result in the 18-bit accumulator D. This un-
signed multiply instruction also allows signed or unsigned multiple precision multiplica-
tion.

1.4 PROGRAMMING MODEL

The programming model (Figure 1-1) for these processors contains five 16-bit and four
8-bit registers that are available to the programmer.

15 0
X — index Register

¥ — Index Register

" - Pointer Registers
U — User Stack Pointer

$ — Hardware Stack Pointer

PC Program Counter
A l B Accumulators

- r
c
7 c
I Dp] Dirsct Page Register
7 4]
[elr]a] 1 |n]z] v]c] condition Code Register

Figure 1-1. Programming Modet

1.5 INDEX REGISTERS (X, Y)

The index registers are used during the indexed addressing modes. The address informa-
tion in an index register is used in the calculation of an effective address. This address
may be used to point directly to data or may be modified by an optional constant or
register offset to produce the effective address.

1.6 STACK POINTER REGISTERS (U, S)

Two stack pointer registers are available in these processors. They are: a user stack
pointer register (U) controlled exclusively by the programmer, and a hardware stack
pointer register (S) which is used automatically by the processor during subroutine calls

1-3

and interrupts, but may also be used by the programmer. Both stack pointers always
point to the top of the stack.

These registers have the same indexed addressing mode capabllities as the index
registers, and also support push and pull instructions. Ali four indexable registers (X, Y,
U, S) are referred to as pointer registers.

1.7 PROGRAM COUNTER (PC)

The program counter register is used by these processors to store the address of the
next instruction to be executed. It may also be used as an index register in certain ad-
dressing modes.

1.8 ACCUMULATOR REGISTERS (A, B, D)

The accumulator registers (A, B) are general-purpose 8-bit registers used for arithmetic
calculations and data manipulation.

Certain Instructions concatenate these registers into one 16-bit accumulator with
register A positioned as the most-significant byte. When concatenated, this register is
referred to as accumulator D.

1.9 DIRECT PAGE REGISTER (DP)

This 8-bit register contains the most-significant byte of the address to be used in the
direct addressing mode. The contents of this register are concatenated with the byte
following the direct addressing mode operation code to form the 16-bit effective address.
The direct page register contents appear as bits A15 through A8 of the address. This
register is automatically cleared by a hardware reset to ensure M6800 compatibiity.

1.10 CONDITION CODE REGISTER (CC)

The condition code register contains the condition codes and the interrupt masks as
shown in Figure 1-2.

6 5 4 3 2 1

7 0
(eTrln]iInfz]vic]

L Carry
Overflow

b Zero
Negative
e |[RC M ask
Half Carry
FIRQ Mask
Entire Flag

Figure 1-2. Condition Code Register

1.10.t CONDITION CODE BITS. Five bits in the condition code register are used to in-
dicate the results of instructions that manipuiate data. They are: half carry (H), negative
(N), zero (2), overflow {V), and carry (C). The effect each instruction has on these bits is
given in the detail information for each instruction {see Appendix A).

1.10.1.1 Half Carry (H), Bit 5. This bit is used to indicate that a carry was generated from
bit three in the arithmetic logic unit as a result of an 8-bit addition. This bit is undefined in
all subtract-like instructions. The decimal addition adjust (DAA) instruction uses the
state of this bit to perform the adjust operation.

1.10.1.2 Negative (N), Bit 3. This bit contains the value of the most-significant bit of the
result of the previous data operation,

1.10.1.3 Zero (2), Bit 2. This bit is used to indicate that the result of the previous opera-
tion was zero.

1.10.1.4 Overflow (V), Bit 1. This bit is used to indicate that the previous operation caused
a signed arithmetic overflow.

1.10.1.5 Carry (C), BIt 0. This bit is used to indicate that a carry or a borrow was generated
from bit seven in the arithmetic logic unit as a result of an 8-bit mathematical operation.

1.10.2 INTERRUPT MASK BITS AND STACKING INDICATOR. Two bits (I and F) are used
as mask bits for the interrupt request and the fast interrupt request inputs. When either
or both of these bits are set, their associated input will not be recognized.

One bit (E) is used to indicate how many registers (all, or only the program counter and
condition code} were stacked during the last interrupt.

1.10.2.1 Fast Interrupt Request Mask (F), Bit 6. This bit is used to mask (disable) any fast
interrupt request line (FIRQ). This bit is set automatically by a hardware reset or after
recognition of another interrupt. Execution of certain instructions such as SWI will also
inhibit recognition of a FIRQ input.

1.10.2.2 Interrupt Request Mask (I), Bit 4. This bit Is used to mask (disable) any interrupt
request input {IRQ). This bit is set automatically by a hardware reset or after recognition
of another interrupt. Execution of certain instructions such as SWI wili also inhibit
recognition of an IRQ input.

1-5

1.10.2.3 Entlre Flag (E), Bit 7. This bit is used to indicate how many registers were stack-
aed. When set, all the registers were stacked during the last interrupt stacking operation.
When clear, only the program counter and condition code registers were stacked during
the last interrupt.

The state of the E bit in the stacked condition code register is used by the return from in-
terrupt (RTI) instruction to determine the number of registers to be unstacked.
1.11 PIN ASSIGNMENTS AND SIGNAL DESCRIPTION

Figure 1-3 shows the pin assignments for the processors. The following paragraphs pro-
vide a short description of each of the input and output signals.

MCBa0a

Vssdie “ aghFALT h HALT
NMI g 2 39 I XTAL 1 TSC
RO 03 P EXTAL [LIC
FRG] 4 37 p RESET [RESET
BSQs 3% P MRDY a6 [AVMA,
BAQs spQ 1 Q
veel z ube b E
a0d s 33 b DMA/BREQ 1 BUSY
Al whr/wW b R/W
A2 a1hoo h DO
A3 20b D1 h D1
Ad 29 h D2 h D2
A P03 D3
AB 2704 h D4
A7 26D D5 h D5
A8 /P06 b D6
A D7 b D7
A0 A5 b A15
At Al4 h Al4
A12 A13 h A13

Figure 1-3. Processor Pin Assignments

1.11.1 MC6809 CLOCKS. The MC6809 has four pins committed to developing the clock
signals needed for internal and system operation. They are: the oscillator pins EXTAL
and XTAL,; the standard M6800 enable (E) clock; and a new, quadrature {Q) ciock.

1.11.1.1 Oscillator (EXTAL, XTAL). These pins are used to connect the processor’s inter-
nal oscitlator to an external, parailel-resonant crystal. These pins can also be used for in-
put of an external TTL timing signail by grounding the XTAL pin and applying the input to
the EXTAL pin. The crystal or the external timing source is four times the resulting bus
frequency.

1.11.1.2 Enable (E). The E clock is simiiar to the phase 2 (¢2) MC6800 bus timing clock.
The leading edge indicates to memory and peripherals that the data is stable and to
begin write operations. Data movement occurs after the Q clock is high and is latched on
the trailing edge of E. Data is valid from the processor {during a write operation) by the
rising edge of E.

1.11.1.3 Quadrature (Q). The Q clock leads the E clock by approximately one half of the E
clock time. Address information from the processor is valid with the leading edge of the
Q clock. The Q clock is a new signal in these processors and does not have an equivalent
clock within the MC68800 bus timing.

1.11.2 MCB809E CLOCKS (E and Q). The MC6809E has two pins provided for the TTL
clock signal inputs required for internal operation. They are the standard M6800 enable
{E) clock and the quadrature (Q) clock. The Q input must lead the E input.

Addresses will be valid from the processor (on address deiay time after the falling edge
of E} and data will be latched from the bus by the faliing edge of E. The Q input is fully TTL
compatible. The E input is used to drive the internal MOS circuitry directly and therefore
requires input levels above the normal TTL {eveis.

1.11.3 THREE STATE CONTROLS (TSC) (MC6809E). This input is used o place the ad-
dress and data lines and the R/W line in the high-impedance state and allows the address
bus to be shared with other bus masters.

1.11.4 LAST INSTRUCTION CYCLE (LIC) (MC6809E). This output goes high during the last
cycle of every instruction and its high-to-low transition indicates that the first byte of an
opcode will be latched at the end of the present bus cycle.

1.11.5 ADDRESS BUS (A0-A15). This 16-bit, unidirectional, three-state bus is used by the
processor to provide address information to the address bus. Address information is
valid on the rising edge of the Q clock. All 16 outputs are in the high-impedance state
when the bus available (BA) signal is high, and for one bus cycle thereafter.

When the processor does not require the address bus for a data transfer, it outputs ad-
dress FFFF1g, and read/write (RMW) high. This is a “dummy access” of the least-
significant byte of the reset vector which replaces the valid memory address (VMA) func-
tions of the MC6800. For the MC6809, the memory read signal internal circultry inhibits
stretching of the clocks during non-access cycles.

1.11.6 DATA BUS (D0-D7). This 8-bit, bidirectional, three-state bus is the general purpose
data path. Alf eight outputs are in the high-impedance state when the bus available (BA)
output is high.

1-7

1.11.7 READ/WRITE (R/W). This output indicates the direction of data transfer on the data
bus. A low indicates that the processor is writing onto the data bus; a high indicates that
the processor is reading data from the data bus. The signal at the R/W output is valid at
the leading edge of the Q clock. The R/W output is in the high-impedance state when the
bus available (BA) output is high.

1.11.8 PROCESSOR STATE INDICATORS (BA, BS). The processor uses these two output
lines to indicate the present processor state. These pins are valid with the leading edge
of the Q clock.

The bus available (BA) output is used to indicate that the buses (address and data) and
the read/write output are in the high-impedance state. This signal can be used to indicate
to bus-sharing or direct memory access systems that the buses are available. When BA
goes low, an additional dead cycie will elapse before the processor regalns contro! of the
buses.

The bus status (BS) output Is used in conjunction with the BA cutput to indicate the pre-
sent state of the processor. Table 1-1 is a listing of the BA and BS outputs and the pro-
cessor states that they indicate. The following paragraphs briefly explaln each processor
state.

Table 1-1. BAJ/BS Signal Encoding

gA BS Processor State

Naormal {Running}

Interrupt or Reset Acknowledge
Sync Acknowledge

Halt/Bus Grant Acknowtedged

—moo
P N]

1.11.8.1 Normal. The processor is running and exscuting instructions.

1.11.8.2 Interrupt or Reset Acknowledge. This processor state is indicated during both
cycles of a hardware vector fetch which occurs when any of the following Interrupts have
occurred: RESET, NMI, FIRQ, 1RQ, SWI, SWI2, and SWIS.

This output, plus decoding of address lines A3 through A1 provides the user with an
indication of which interrupt is being serviced.

1.11.8.3 Sync Acknowledge. The processor is waiting for an external synchronization in-
put on an interrupt line. See SYNC instruction in Appendix A.

1.11.8.4 Halt/Bus Granmt. The processor is halted or bus control has been granted to some
other device.

1-8

1.11.9 RESET (RESET). This input is used to reset the processor. A low input lasting
longer than one bus cycle will reset the processor.

The reset vector is fetched from locations $FFFE and $FFFF when the processor enters
the reset acknolwedge state as indicated by the BA output being low and the BS output
being high.

During initial power-on, the reset input should be held low until the clock oscillator is ful-
ly operational.

1.11.10 INTERRUPTS. _The processor has three separate interrupt input_pins: non-
maskable interrupt (NMI), fast interrupt request (FIRQ), and interrupt request {IRQ). These
interrupt inputs are latched by the falling edge of every Q clock except during cycle steal-
ing operatlons where only the NMi input is latched. Using this point as a reference, a
delay of at least one bus cycle will occur before the interrupt is recognized by the pro-
Cessor.

1.11.10.1 Non-Maskable Interrupt (NMI). A negative edge on this input requests that a
non-maskable interrupt sequence be generated. This input, as the name indicates, can-
not be masked by software and has the highest priority of the three interrupt inputs. After
a reset has occurred, a NMI input will not be recognized by the processor until the first
program load of the hardware stack pointer. The entire machine state is saved on the
hardware stack during the processing of a non-maskable interrupt. This interrupt is inter-
nally blocked after a hardware reset until the stack pointer is initialized.

1.11.10.2 Fast Interrupt Request (FIRQ). This input is used to initiate a fast interrupt re-
quest sequence. Initiation depends on the F (fast interrupt request mask) bit in the condi-
tion code register being clear. This bit is set during reset. During the interrupt, only the
contents of the condition code register and the program counter are stacked resuiting in
a short amount of time required to service this interrupt. This interrupt has a higher priori-
ty than the normal interrupt request (IRQ).

1.11.10.3 Interrupt Request (IRQ). This input is used to initlate what might be considered
the “normal” interrupt request sequence. Initiation depends on the | {interrupt mask) bit
in the condition code register being clear. This bit is set during reset. The entire machine
state is saved on the hardware stack during processing of an IRQ input. This input has
the lowest priority of the three hardware interrupts.

1.11.11 MEMORY READ (MRDY) (MC6809). This input allows extension of the E and Q
clocks to allow a longer data access time. A low on this input allows extension of the E
and Q clocks (E high and Q low) in integrai multiples of quarter bus cycies {up to 10
cycles) to allow interface with slow memory devices.

19

Memory ready does not extend the E and Q clocks during non-valid memory access
cycles and therefore the processor does not slow down for “don’t care” bus accesses.
Memory ready may also be used to extend the E and Q clocks when an external device is
using the halt and direct memory access/bus request inputs.

1.11.12 ADVANCED VALID MEMORY ADDRESS (AVMA) (MC8809E). This output signal in-
dicates that the MCBB09E will use the bus in the following bus cycle. This output is low
when the MCBBO9E is in either a halt or sync state.

1.11.13 HALT. This input is used to halt the processor. A low input halts the processor at
the end of the present instruction execution cycle and the processor remains halted in-
definitely without loss of data.

When the processor is halted, the BA output is high to indicate that the buses are in the
high-impedance state and the BS output is also high to indicate that the processor is in
the halt/bus grant state.

During the hait/bus grant state, the processor will not respond to external real-time re-
quests such as FIRQ or IRQ. However, a direct memory access/bus request input will be
accepted. A non-maskable interrupt or a reset input will be latched for processing later.
The E and Q clocks continue to run during the halt/bus grant state.

1.11.14 DIRECT MEMORY ACCESS/BUS REQUEST (DMA/BREQ) (MC6809). This input is
used to suspend program execution and makse the buses avallable for another use such
as a direct memory access or a dynamic memory refresh.

A low level on this input occurring during the Q clock high time suspends instruction ex-
ecution at the end of the current cycle. The processor acknowledges acceptance of this
input by setting the BA and BS outputs high to signify the bus grant state. The requesting
device now has up to 15 bus cycles before the processor retrieves the bus for self-refresh.

Typically, a direct memory access controller will request to use the bus by setting the
DMA/BREQ input low when E goes high. When the processor acknowledges this input by
setting the BA and BS outputs high, that cycle will be a dead cycle used to transfer bus
mastership to the direct memory access controller. False memory access during any
dead cycle should be prevented by externally developing a system DMAVMA signal
which is low In any cycle when the BA output changes.

When the BA output goes low, either as a result of a direct memory access/bus request or
a processor self-refresh, the direct memory access device should be removed from the
bus. Another dead cycle will elapse before the processor accesses memory, to allow
transfer of bus mastership without contention.

1.11.15 BUSY (MC8B809E). This output indicates that bus re-arbitration should be deferred
and provides the indivisable memory operation required for a “test-and-set” primitive.

This output will be high for the first two cycles of any Read-Modify-Write instruction, high
during the first byte of a double-byte access, and high during the first byte of any indirect
access or vector-fetch operation,

1.11.16 POWER. Two inputs are used to supply power to the processor: VoG is +5.0
+ 5%, while Vgg Is ground or 0 volts.

111/1-12

SECTION 2
ADDRESSING MODES

e

2.1 INTRODUCTION

This section contains a description of each of the addressing modes available on these
processors.

2.2 ADDRESSING MODES

The addressing modes available on the MC6809 and MCB6809E are: Inherent, Immediate,
Extended, Direct, Indexed (with various offsets and autoincrementing/decrementing),
and Branch Relative. Some of these addressing modes require an additional byte after
the opcode to provide additional addressing interpretation. This byte Is called a postbyte.

The following paragraphs provide a description of each addressing mode. In these
descriptions the term effective address is used to indicate the address in memory from
which the argument for an instruction is fetched or stored, or fram which instruction pro-
cessing is to proceed.

2.2.1 INHERENT. The information necessary to execute the instruction is contained in
the opcode. Some operations specifying only the index registers or the accumuiators,
and no other arguments, are also included in this addressing mode.

Example: MUL

2.2.2 IMMEDIATE. - The operand is contained in one or two bytes immediately foliowing
the opcode. This addressing mode is used to provide constant data values that do not
change during program execution. Both 8- bit and 16-bit operands are used depending on
the size of the argument specified in the opcode.

Example: LDA #CR
LDB #7
LDA #8$F0
LDB #%1110000
LDX #$8004

Another form of immediate addressing uses a postbyte to determine the registers to be
manipulated. The exchange (EXG) and transfer (TFR) instructions use the postbyte as
shown in Figure 2-1(A). The push and pull instructions use the postbyte to designate the
registers to be pushed or pulled as shown in Figure 2-1(B).

2-1

b? b6 b5 b4 b3 b2 b1 b3

I SCURCE (A1)] DESTINATION (R2}]
Code* Registar Code* Register

0000 O (A:B) () [4] Program Counter

0001 X index 1000 A Accumuiator

0010 ¥ index 1001 B Accumulator

001 U Stack Pointer 1010 Condition Coda

0100 S Stack Pointer 1011 Direct Page

*All other combinations of bits produce undafined results.
{A) Exchange (EXG) or Transfer (TFR) instruction Postbyte

b7 b8 b5 bd b3 b2 bl b0
Iec]s/uly [x Jor]le | ajfecc]

PC = Program Counter
§/U = Hardware/User Stack Pointer
Y = Y Index Register

X = U Index Register

DP = Direct Page Register

B = B Accumulator

A = A Accumulator

cc = Condition Code Register

{B} Push (PSH) or Pull (PUL) Instruction Postbyte

Figure 2-1. Postbyte Usage for EXG/TFR, PSH/PUL Instructions

2.2.3 EXTENDED. The effective address of the argument is contained in the two bytes
following the opcode. Instructions using the extended addressing mode can reference
arguments anywhere in the 84K addressing space. Extended addressing is generally not
used in position independent programs because it supplies an absolute address.

Example: LDA $CAT

2.2.4 DIRECT. The effective address is developed by concatenation of the contents of the
direct page register with the byte immediately following the opcode. The direct page
register contents are the most-significant byte of the address. This allows accessing 256
locations within any one of 256 pages. Therefore, the entire addressing range is available
for access using a single two-byte Instruction.

Example: LDA > CAT

2.2.5 INDEXED. In these addressing modes, one of the pointer registers (X, Y, U, or 8), and
sometimes the program counter (PC) is used in the calculatlon of the effective address of
the instructlon operand. The basic types {and their varlations) of indexed addressing
available are shown in Table 2-1 along with the postbyte configuration used.

2.2.5.1 Constant Oftset from Register. The contents of the register designated in the
postbyte are added to a twos complement offset value to form the effective address of

22

the instruction operand. The contents of the designated register are not affected by this
addition. The offset sizes avallable are:

No
offset — designated register contains the effective
address

5bit — 1610 +15
8-bit — 128 to + 127
16-bit — 32768 to + 32767

Table 2-1. Postbyte Usage for Indexed Addressing Modes

Mode Typa Variation Direct Indirect
Constant Offset from Register No Offset 1RRO0I00 | 1RR10100
{twos Complement Offset) 5-Bit Offset ORRnnnnn | Defaults 10 8-bit]
8-Bit Cffset 1RRO1400 | 1RR11000
16-Bit Offsat 1RRO100T | 1RR11001
Accumulator Offsat from Register | A Accumulator Offset 1RRO0O11D | 1RR101t0
{twos Complement QOffset) B Accumulator Offset TRRO0101 | 1RAR101N
D Accumnulator Offset 1RRO1011 | 1RR11011
Auto Increment/ Decrement from Ingrement by 1 1RRODNAG | Not Allowed
Register Increment by 2 1RRO00O01 TRR10001
Decremant by 1 ‘1 JRRO0OID | Not Allowsd
Decrement by 2 1RR0001Y TRR10011
Constant Offset from Pragram 8-Bit Cffset 1XX01100 | ¥XX11100
Counter 16-Bit Offset 1XX01101 | $XX1111
Extendad Indirect 16-Bit Address @ | -——--- 1001111

The 5-bit offset value is contained in the postbyte. The 8- and 16-bit offset values are con-
tained In the byte or bytes immediately following the postbyte. If the Motorola assembler
is used, it will automatically determine the most efflcient offset; thus, the programmer
need not be concerned about the offset size.

Examples: LDA X LDY -64000,U
LDB 0,Y LDA 17,PC
LDX 64,0005 LDA There,PCR

2.2.5.2 Accumulator Offset from Register. The contents of the index or pointer register
designed in the postbyte are temporarily added to the twos compiement offset value con-
tained in an accumulator (A, B, or D) also designated in the postbyte. Nelther the
designated reglster nor the accumulator contents are affected by this addition.

Example: LDA AX LDA DU
LDA B)Y

2.2.5.3 Autoincrement/Decrement from Register. This addressing mode works in a
postincrementing or predecrementing manner. The amount of increment or decrement,
one or two positions, is designated in the postbyte.

2-3

in the autoincrement mode, the contents of the effective address contained in the
pointer register, designated In the postbyte, and then the pointer register is automatical-
ly incremented; thus, the pointer register is postincremented.

In the autodecrement mode, the pointer register, designated in the postbyte, is
automatically decremented first and then the contents of the new address are used;
thus, the pointer register Is predecremented.

Examples: Autoincrement Autodecrement
LDA X+ LDY X+ + LDA ,-X LDY ,--X
LDA Y+ LDX Y+ + LDA ,-Y LDX ,—--Y
LDA S+ LDX U+ + LDA ,-S8 LDX ,--U
LDA U+ LDX S+ + LDA ,-U LDX ,--S

2.2 5.4 Indirection. When using indirection, the effective address of the base indexed ad-
dressing mode is used to fetch two bytes which contain the final effective address of the
operand. It can be used with all the Indexed addressing modes and the program counter
relative addressing mode.

2.2 5.5 Extended Indirect. The effective address of the argument is located at the ad-
dress specified by the two bytes following the postbyte. The postbyte is used to indicate
indirection.

Example: LDA [$F000]

2.2.5.8 Program Counter Relative. The program counter can also be used as a pointer
with either an 8- or 16-bit signed constant offset. The offset value is added to the program
counter to develop an etfective address. Part of the postbyte is used to indicate whether
the offset is 8 or 16 bits.

2 2 6 BRANCH RELATIVE. This addressing mode s used when branches from the current
instruction location to some other locatlon relative to the current program counter are
desired. If the test condition of the branch instruction is true, then the effective address
is calculated (program counter plus twos complement offset) and the branch s taken. If
the test conditlon is false, the processor proceeds to the next in-line instruction. Note
that the program counter is always pointing to the next instruction when the offset is ad-
ded. Branch relative addressing Is always used in position independent programs for all
control transfers.

For short branches, the byte following the branch instruction opcode is treated as an
8-bit signed offset to be used to calculate the effective address ot the next instruction |f
the branch is taken. This is called a short relative branch and the range is limited to plus
127 or minus 128 bytes from the following opcode.

For long branches, the two bytes after the opcode are used to calculate the effective ad-
dress. This is called a long relative branch and the range is plus 32,767 or minus 32,768

SECTION 3
INTERRUPT CAPABILITIES

3.1 INTRODUCTION

The MC6809 and MCB809E microprocessors have six vectored interrupts (three hardware
and three software). The hardware Interrupts are the non-maskable interrupt (NMi), the
fast maskable interrupt request (FIRQ), and the normal maskable interrupt request (1RQ).
The software interrupts consist of SWI, SWI2, and SWI3. When an interrupt request is
acknowledged, all the processor registers are pushed onto the hardware stack, except in
the case of FIRQ where only the program counter and the condition code register is sav-
ed, and control is transferred to the address in the interrupt vector. The priority of these
interrupts is, highest to lowest, NMI, SWI, FIRQ, IRQ, SWI2, and SWI3. Figure 3-1 is a
detailed flowchart of interrupt processing In these processors. The interrupt vector loca-
tions are given in Table 3-1. The vector locations contain the address for the interrupt
routine,

Additional information on the SWI, SWI2, and SWI3 interrupts is given in Appendix A. The

hardware interrupts, NMI, FIRQ, and IRQ are listed alphabetically at the end of Appendix
A.

Table 3-1. Interrupt Vector Locations

interrupt Vector Location
Description MS Byte | LS Byte
Reset (NESET) FFFE “FFFF |
Non-Maskabie Interrupt (NKD FFFC FFFD
Software Interrupt {SWH) FFFA FFFB
Interrupt Request (IRQ) FFF8 FFF9
Fast Interrupt Request {FIRG) FFFB FFF7
Software Intarrupt 2 (SWI2} FFF4 FFFE
Software Interrupt 3 ISWI3} FFF2 FFF3
Reserved FFFO FFF1

3.2 NON-MASKABLE INTERRUPT (NM)

The non-maskable interrupt is edge-sensitive in the sense that if it is sampled low one cy-
cle after it has been sampled high, a non-maskable interrupt will be triggered. Because
the non-maskable interrupt cannot be masked by execution of the non-maskable inter-
rupt handler routine, it is possible to accept another non-maskable Interrupt before ex-
ecuting the first Instruction of the interrupt routine. A fatal error will exist if a non-
maskable interrupt is repeatedly allowed to occur before completing the return from in-
terrupt (RTI) instruction of the previous non-maskable interrupt request, since the stack

3-1

will eventuaily overflow. This interrupt Is especially applicable to gaining immediate pro-
cessor response for powerfail, software dynamic memory refresh, or other non-delayable
events,

3.3 FAST MASKABLE INTERRUPT REQUEST (FIRQ)

A low level on the FIRQ input with the F (fast interrupt request mask) bit in the condition
code register clear triggers this interrupt sequence. The fast interrupt request provides
fast interrupt response by stacking only the program counter and condition code
register. This allows fast context switching with minimal overhead. If any registers are
used by the interrupt routine then they can be saved by a single push instruction.

After accepting a fast interrupt request, the processor clears the E flag, saves the pro-
gram counter and condition code register, and then sets both the | and F bits to mask any
further IRQ and FIRQ interrupts. After servicing the original interrupt, the user may selec-
tively clear the | and F bits to allow multiple-level interrupts if so desired.

3.4 NORMAL MASKABLE INTERRUPT REQUEST (IRQ)

A low level on the IRQ input with the | {interrupt request mask) bit in the condition code
register clear triggers this interrupt sequence. The normai maskabie interrupt request
provides a slower hardware response to interrupts because it causes the entire machine
state to be stacked. However, this means that interrupting software routines can use all
procassor resources without fear of damaging the interrupted routine. A normal interrupt
request, having lower priority than the fast interrupt request, is prevented from interrup-
ting the fast interrupt handler by the automatic setting of the | bit by the fast interrupt re-
quest handler.

After accepting a normal interrupt request, the processor sets the E flag, saves the entire
machine state, and then sets the | bit to mask any further interrupt request inputs. After
servicing the original interrupt, the user may clear the | bit to allow muitiple-level normal
interrupts.

All interrupt handling routines should return to the formerly executing tasks using a
return from interrupt) instruction. This instruction recovers the saved machine state
from the hardware stack and control is returned to the Iinterrupted program. If the
recovered E bit is clear, it indicates that a fast interrupt request occurred and only the
program counter address and condition code register are to be recovered.

3.5 SOFTWARE INTERRUPTS (SWI, SW12, SWI3)

The software interrupts cause the processor to go through the normal interrupt request
sequence of stacking the complete machine state even though the interrupting source is
the processor itself. These interrupts are commonly used for program debugging and for
calls to an operating system.

3-2

Normal processing of the SWI input sets the | and F bits to prevent either of these inter-
rupt requests from affecting the completion of a software interrupt request. The remain-
ing software interrupt request inputs (SWI2 and SW13) do not have the priority of the SWI
input and therefore do not mask the two hardware interrupt request inputs (FIRQ and
IRQ).

3-3

ueyomol4 Buissedsold ydnueju -¢ einbi4

(360890} 810AD Yoiay J0103A 1si1y Buunp ybiy st ASNG T
“UBUOMOY} BY) Ul 1utod Aue Wwody 8aUBNbas 1asas ayl Bundlu Ul 3nsas fim 1353y Buiiessy | 'S3ION

1 ! abpajmounoy ljeH

0 i 26pa|mOouUNOY JUAS

i 0 abpajmouydy 1asay 10 1dnuaiu|

0 0 Buiuuny
sg | ve aeg sng uononAsu|

o
uonnoaxgy

2d N A X dD

ER
XorISury

'8 'y xoeisun
s8-0
O
zd34 | OMS
9344 | o4
8444 | owl Auo 360890W - <
vidd | IMS 3443 w \eseg Y
0434 IWN Od — 0187 C U
A0
Buissad0:d 0d = (10108A) zmoN »
awnsay prvn
ve-0
E 18U 1xaN
AwQ 360890W | ON1-0
218071 JAN 1D
20A3 3 | 104 L+IND3

Burssaoo1d
awnsay

>
<

EIMS
» LIvH
IIMS
IWN Wiesi)

WA Ed.mﬂ

yoie LN 910

e

IYMD 13-

Hd0~-0

23 94
weis

signuaiuy
["elal

232'v '8 °da ‘X
A ‘N ‘Jd Weis

bes 1353y

aouanbeg
03uvnd

EReLIE]

SECTION 4
PROGRAMMING

4.1 INTRODUCTION

These processors are designed to be source-code compatible with the M6800 to make
use of the substantial existing base of M6800 software and training. However, this asset
should not overshadow the capabilities bullt into these processors that allow more
modern programming techniques such as position-independence, modular programm-
ing, and reentrancy/recursion to be used on a microprocessor-based system. A brief
review of these methods is given in the following paragraphs.

4.1.1 POSITION INDEPENDENCE. A program is said to be “position-independent” if it
will run correctly when the same machine code is positioned arbitrarily in memory. Such
a program is useful in many different hardware configurations, and might be copied from
a disk into RAM when the operating system first sees a request to use a system utility.
Position-independent programs never use absolute (extended or direct) addressing: in-
stead, inherent immediate, register, indexed and relative modes are used. In particular,
there should be no jump (absolute) or jump to subroutine instructions nor should ab-
solute addresses be used. A position-independent program is almost always preferable
to a position-dependent program (aithough position-independent code is usually 5 to
10% slower than normal code).

4.1.2 MODULAR PROGRAMMING. Modular programming is another indication of quality
code. A module is a program element which can be easlly disconnected from the rest of
the program either for re-use in a new environment or for replacement. A module s usual-
ly a subroutine (although a subroutine Is not necessarily a module); frequently, the pro-
grammer isolates register changes internal to the module by pushing these registers
onto the stack upon entry, and pulling them off the stack before the return. Isolating
register changes in the called module, to that module alone, aliows the code in the call-
ing program to be more easily analyzed since It can be assumed that all registers (except
those specifically used for parameter transfer are unchanged by each called module.
This leaves the processor’'s registers free at each level for loop counts, address com-
parisons, stc.

4.1.2.1 Local Storage. A clean method for allocating “local” storage s required both by
position-independent programs as well as modular programs. Local or temporary storage
is used to hoid values only during execution of a module {or called modules) and is releas-
ed upon return. One way to allocate local storage is to decrement the hardware stack

41

polnter(s) by the number of bytes needed. Interrupts will then leave this area intact and it
can be de-allocated on exiting the module. A module will aimost always need more tem-
porary storage than just the MPU registers.

4.1.2.2 Global Storage. Even in a modular environment there may be a need for “global”
values which are accessible by many modules within a given system. These provide a
convenient means for storing values from one invocation to another invocation of the
same routine. Global storage may be created as local storage at some level, and a
pointer register (usually U) used to point at this area. This register is passed unchanged
in all subroutines, and may be used to index into the global area.

4.1.3 REENTRANCY/RECURSION. Many programs will eventually involve execution in an
interrupt-driven environment. If the interrupt handlers are complex, they might well call
the same routine which has just been interrupted. Therefore, to protect present programs
against certain obsolescencae, all programs should be written to be reentrant. A reentrant
routine alocates different local variable storage upon each entry. Thus, a later entry
does not destroy the processing assoclated with an earlier entry.

The same technique which was implemented to allow reentrancy also allows recursion.
A recursive routine is defined as a routine that calis itself. A recursive routine might be
written to simplify the solution of certain types of problems, especially those which have
a data structure whose elements may themselves be a structure. For example, a paren-
thetical equation represents a case where the expression in parenthesis may be con-
sidered to be a value which is operated on by the rest of the equatlon. A programmer
might choose to write an expression evaluator passing the parenthetical expression
(which might also contain parenthetical expressions) in the call, and receive back the
returned value of the expression within the parenthesis.

4.2 M8809 CAPABILITIES

The following paragraphs briefly explain how the MC8809 is used with the programming
technlques mentloned earlier.

4.2.1 MODULE CONSTRUCTION. A module can be defined as a logically self-contained
and discrete part of a larger program. A properly constructed module accepts well defin-
ed inputs, carries out a set of processing actions, and produces a specified output. The
use of parameters, local storage, and global storage by a program module is given in the
following paragraphs. Since registers will be used inslde the module (essentially a form
of local storage), the first thing that is usually done at entry to a module is to push (save)
them on to the stack. This can be done with one instruction (e.g., PSHS Y, X, B, A). After
the body of the module is executed, the saved registers are collected, and a subroutine
return is performed, at one time, by pulling the program counter from the stack (e.g.,
PULS A,B,X,Y,PC).

4-2

4.2.1.1 Parameters. Parameters may be passed to or from modules elther in registers, if
they will provide sufficient storage for parameter passage, or on the stack. if parameters
are passed on the stack, they are placed there before calling the iower level module. The
called module is then written to use local storage inside the stack as needed (e.g., ADDA
offset,S). Notice that the required offset consists of the number of bytes pushed (upon
entry), plus two from the stacked return address, plus the data offset at the time of the
call. This value may be calculated, by hand, by drawing a “stack picture” diagram
representing module entry, and assigning convenient mnemonics to these offsets with
the assembler. Returned parameters replace those sent to the routine. If more
parameters are to be returned on the stack than would normally be sent, space for their
return is allocated by the calling routine before the actual call (if four additional bytes are
to be returned, the caller would execute LEAS —4,S to acquire the additional storage).

4.2.1.2 Local Storage. Local storage space Is acquired from the stack while the present
routine is executing and then returned to the stack prior to exit. The act of pushing
registers which will be used in later calculations essentially saves those registers in tem-
porary local storage. Additional local storage can easily be acquired from the stack e.g.,
executing LEAS - 2048,S acquires a buffer area running from the 0,8 to 2047,S inclusive.
Any byts in this area may be accessed directly by any instruction which has an indexed
addresing mode. At the end of the routine, the area acquired for local storage Is released
(.., LEAS 2048,8) prior to the final pull. For cleaner programs, local storage should be
allocated at entry to the module and released at the exit of the module.

4.2.1.3 Global Storage. The area required for global storage is also most effectively ac-
quired from the stack, probably by the highest level routine in the standard package.
Although this is local storage to the highest level routine, it becomes “global” by posi-
tioning a register to point at this storage, (sometimas referred to as a stack mark) then
establishing the conventlon that all modules pass that same pointer value when calling
lower |level modules. In practice, It is convenient to leave this stack mark register un-
changed in all modules, especlally if global accesses are common. The highest level
routine in the standard package would execute the following sequence upon entry (to in-
itialize the global area):

PSHS U higher level mark, if any
TFR S,U new stack mark
LEAS -17,U allocate global storage

Note that the U register now defines 17-bytes of locally allocated (permanent) globals
{(which are —1,U through - 17,U) as well as other external globals (2,U and above) which
have been passed on the stack by the routine which called the standard package. Any
global may be accessed by any module using exactly the same offset value at any level
{e.9., ROL, RAT,U; where RAT EQU - 11 has been defined). Furthermore, the values stack-
ed prior to invoking the standard package may include pointers to data or l/O peripherals.
Any indexed operation may be performed indexed indirect through those pointers, which
means, for example, that the module need know nothing about the actual hardware con-
figuration, except that (upon entry) the pointer to an /O register has been placed at a
given location on the stack.

4-3

4.2.2 POSITION-INDEPENDENT CODE. Posltlon-independent code means that the same
machine language code can be placed anywhere in memory and still functlon correctly.
The MB809 has a long relative (16-bit offset) branch mode along with the common
MC8800 branches, plus program-counter relative addressing. Program-counter relative
addressing uses the program counter like an indexable register, which allows all instruc-
tions that reference memory to also reference data relative to the program counter. The
M6809 also has load effective address (LEA) instructions which aliow the user to point to
data in a ROM in a position-independent manner.

An important rule for gensrating position-independent code is: NEVER USE ABSOLUTE
ADDRESSING.

Program-counter relative addressing on the M6809 is a form of indexed addressing that
uses the program counter as the base register for a constant-otfset indexing operation.
Howaever, the M6809 assembler treats the PCR address fleld differently from that used in
other indexed instructions. in PCR addressing, the assembly time location value is sub-
tracted from the (constant) value of the PCR offset. The resuiting distance to the desired
symbol is the value placed into the machine language object code. During execution, the
processor adds the value of the run time PC to the distance to get a position-independent
absolute address.

The PCR indexed addressing form can be used to point at any location relative to the pro-
gram regardless of position in memory. The PCR form of indexed addressing allows ac-
caess to tables within the program space In a position-independent manner via use of the
load effective address instruction.

in a program which is completely position-independent, some absolute locations are
usually required, particularly for l/O. If the locations of /O devices are placed on the
stack (as globais) by a small setup routine before the standard package is invoked, all in-
ternal modules can do their /O through that pointer (e.g., STA [ACIAD, U)), allowing the
hardware to be easily changed, if desired. Only the single, small, and obvious setup
routine need be rewritten for each different hardware configuration.

Global, permanent, and temporary values need to be easily available in a position-
independent manner. Use the stack for this data since the stacked data is directly ac-
cessible. Stack the absolute address of /O devices before calling any standard software
package since the package can use the stacked addresses for /O in any system.

The LEA instructions allow access to tables, data, or immediate values in the text of the
program in a position-independent manner as shown in the following example:

LEAX " MSG1,PCR
LBSR PDATA
MSG1 FCC " JPRINT THISY
4-4

Here we wish to point at a message to be printed from the body of the program. By
writing “MSG1, PCR” we signal the assembler to compute the distance between the pre-
sent address (the address of the LBSR) and MSG1. This resuit is inserted as a constant
into the LEA instruction which will be indexed from the program counter value at the time
of execution. Now, no matter where the code is located, when it is executed the com-
puter offset from the program counter will point at MSG1. This code is position-
independent.

It Is common to use space in the hardware stack for temporary storage. Space Is made
for temporary variables from 0,S through TEMP-1, $ by decrementing the stack pointer
equal to the length ot required storage. We could use:

LEAS - TEMP,S.

Not only does this facilitate position-independent code but it is structursd and helps
reentrancy and recursion.

4.2.3 REENTRANT PROQGRAMS. A program that can be executed by several different
users sharing the same copy of It in memory is called reentrant. This is important for in-
terrupt driven systems. This method saves considerable memory space, especially with
large interrupt routines. Stacks are required for reentrant programs, and the M6809 can
support up to four stacks by using the X and Y index registers as stack pointers.

Stacks are simple and convenient mechanisms for generating reentrant programs.
Subroutines which use stacks for passing paramseters and results can be easily made to
be reentrant. Stack accesses use the indexed addressing mode for fast, efficient execu-
tion. Stack addressing is quick.

Pure code, or code that is not self-modifying, is mandatory to produce reentrant code. No
internal information within the code is subject to modification. Reentrant code never has
internal temporary storage, is simpler to debug, can be placed in ROM, and must be inter-
ruptable.

4.2.4 RECURSIVE PROGRAMS. A recursive program is one that can call itself. They are
quite convenient for parsing mechanisms and certain arithmetic functions such as com-
puting factorlals. As with reentrant programming, stacks are very useful for this techni-
que.

4.2.5 LOOPS. The usual structured loops (i.e., REPEAT...UNTIL, WHILE...DO, FOR..,, etc.)
are avaliable in assembly language in exactly the same way a high-level language com-
piler could translate the construct for execution on the target machine. Using a
FOR...NEXT loop as an example, it is possible to push the loop count, increment value,
and termination value on the stack as variables local to that loop. On sach pass through
the loop, the working register is saved, the loop count picked up, the increment added in,
and the result compared to the termination value. Based on this comparison, the 1oop
counter might be updated, the working register recovered and the loop resumed, or the
working register recovered and the loop varlables de-allocated. Reasonable macros

45

could make the source form for loop trivial, even in assembly language. Such macros
might reduce errors resulting from the use of multiple instructions simply to implement a
standard control structure.

4.2.6 STACK PROGRAMMING. Many microprocessor applications require data stored as
continguous pieces of Information in memory. The data may be temporary, that is, sub-
ject to change or it may be permanent. Temporary data wili most likely be stored in RAM.
Permanent data will most likely be stored in ROM.

it is important to allow the main program as well as subroutines access to this block of
data, especially if arguments are to be passed from the main program to the subroutines
and vice versa.

4,2.6.1 M6B09 Stacking Operations. Stack pointers are markers which point to the stack
and its internal contents. Although all four index registers may be used as stack
registers, the S (hardware stack pointer) and the U (user stack pointer) are generally
preferred because the push and pull instructions apply to these registers. Both are 16-bit
indexable registers. The processor uses the S register automatically during interrupts
and subroutine calls. The U register is free for any purpose needed. It is not affected by
interrupts or subroutine calls Implemented by the hardware.

Either stack pointer can be specified as the base address in indexed addressing. One use
of the indirect addressing mode uses stack pointers to allow addresses of data to be
passed to a subroutine on a stack as arguments to a subroutine. The subroutine can now
reference the data with one instruction. High-level language calls that pass arguments
by reterence are now more efficiently coded. Also, each stack push or pull operation In &
program uses a postbyte which specifies any register or set of registers to be pushed or
pulled from either stack. With this option, the overhead assoclated with subroutine calls
in both assembly and high-level language programs is greatly decreased. In fact, with the
large number of instructions that use autoincrement and autodecrement, the M8809 can
emulate a true stack computer architecture.

Using the S or U stack pointer, the order in which the registers are pushed or pulled is
shown in Figure 4-1, Notice that we push *onto” the stack towards decreasing memory
locations. The program counter is pushed first. Then the stack pointer is decremented
and the “other” stack pointer is pushed onto the stack. Decrementing and storing con-
tinues until all the registers requested by the postbyte are pushed onto the stack. The
stack pointer points to the top of the stack after the push operation.

The stacking order Is specified by the processor. The stacking order is identical to the
order used for all hardware and software interrupts. The same order is used even if a
subset of the reglsters is pushed.

Without stacks, most modern block-structured high-level languages would be cumber-
some to implement. Subroutine linkage is very important in high-level language genera-
tion. Paragraph 4.2.6.2 describes how to use a stack mark pointer for this important task.

46

Good programming practice dictates the use of the hardware stack for temporary
storage. To reserve space, decrement the stack pointer by the amount of storage re-
quired with the instruction LEAS - TEMPS, 8. This instruction makes space for tem-
porary variables from 0,S through TEMPS —1,S.

Memory
0000
= 2
" Stack Pointer . c } " .
‘ After Stacking C Condition Code Register Contents
} A Accumulatar Contents
B } 8 Accumulator Contents
Op] Direct Page Register Contents
X.H
- — —
3 3 XL X Contents
] -
— = ¢ Y Contents
Y.L
UHor S H .
— —{ ¢ Other Stack Pointer Contents
U.Lor S.L.
PC.H
- - Progeam Counter Contents
PC.L
Stack Pointer
Before Stacking "]
FFFF

Figure 4-1. Stacking Order

4.2.6.2 Subroutine Linkage. In the highest level routine, global variables are sometimes
considered to be local. Therefore, global storage is allocated at this point, but access to
these same variables requires different offset values depending on subroutine depth.
Because subroutine depth changes dynamically, the length may not be known
beforehand. This problem s solved by assigning one pointer (U will be used in the follow-
ing description, but X or Y could also be used) to “mark” a location on the hardware stack
by using the instruction TFR S,U. If the programmer does this immediately prior to
allocating global storage, then all variables will then be available at a constant negative
offset location from this stack mark. If the stack is marked after the global variables are

4-7

allocated, then the global variables are available at a constant positive oftset from U.
Register U is then called the stack mark pointer. Recall that the hardware stack pointer
may be modified by hardware interrupts. For this reason, it is fatal to use data referred to
by a negative offset with respect to the hardware stack pointer, S.

4.26.3 Software Stacks. If more than two stacks are needed, autoincrement and
autodecrement mode of addressing can be used to generate additional software stack
polinters.

The X, Y, and U index registers are quite useful in loops for incrementing and decremen-
ting purposes. The pointer Is used for searching tables and also to move data from one
area of memory to another (block moves). This autoincrement and autodecrement
feature Is avallable in the indexed addressing mode of the M6809 to facilitate such opera-
tions.

In autoincrement, the value contained in the index register (X or Y, U or S) is used as the
effective address and then the register is incremented {postincremented). In autodecre-
ment, the index register is first decremented and then used to obtain the effective ad-
dress (predecremented). Postincrement or predecrement is always performed in this ad-
dressing mode. This is equivalent in operation to the push and pull from a stack. This
equivalence allows the X and Y index registers to be used as software stack pointers. The
indexed addressing mode can also implement an extra level of post indirection. This
feature supports parameter and pointer operations.

4.2.7 REAL TIME PROGRAMMING. Real time programming requires speclal care.
Sometimes a peripheral or task demands an immediate response from the processor,
other times it can wait. Most real time applications are demanding in terms of processor
response.

A common solution is to use the interrupt capability of the processor in solving real time
problems. Interrupts mean just that; they request a break in the current sequence of
avents to solve an asynchronous service request. The system designer must consider all
variations of the conditions to be encountered by the system including software interac-
tion with interrupts. As a result, problems due to software design are more common in in-
terrupt implementation code for real time programming than most other sltuations. Soft-
ware timeouts, hardware interrupts, and program control interrupts are typically used in
solving real time programming problems.

4.3 PROGRAM DOCUMENTATION

Common sense dictates that a well documented program is mandatory. Comments are
needed to explain each group of instructions since thelr use is not always cbvious from
looking at the code. Program boundaries and branch instructions need full clarification.
Consider the following points when writing comments: up-to-date, accuracy, com-
pleteness, conciseness, and understandability.

4-8

Accurate documentation enables you and others to maintain and adapt programs for up-
dating and/or additional use with other programs.

The following program documentation standards are suggested.

A) Each subroutine should have an associated header block containing at least the
following elements:

1)} A full specification for this subroutine — including associated data struc-
tures — such that replacement code could be generated from this description
alone.

2) All usage of memory resources must be defined, including:

a) All RAM needed from temorary (local) storage used during execution of
this subroutine or called subroutines.
b) All RAM needed for permanent storage (used to transfer values from one
exscution of the subroutine to future executions).
¢) All RAM accessed as global storage (used to transfer values from or to
higher-level subroutines).
d) All possible exlt-state conditions, if these are to be used by calling
routines to test occurrences internal to the subroutine.
B) Code internal to each subroutine should have sutficient associated line com-
ments to hslp in understanding the code.
C) All code must be non-self-modifying and position-independent.
D) Each subroutine which includes a loop must be separately documented by a
flowchart or pseudo high-level language aigorithm.
E) Any module or subroutine should be executable starting at the first location and
exit at the last location.

4.4 INSTRUCTION SET

The complete instruction set for the MB803 is given in Table 4-1.

Table 4-1. Instruction Set

Instruction Description
ABX Add Accumulator B into Index Register X
ADC Add with Carry into Register
ADD Add Memory into Register
AND Logical AND Memory intc Register
ASL Arithmetic Shift Left
ASR Arithmetic Shift Right
BCC Branch on Carry Clear
BCS Branch on Carry Set
BEQ Branch on Equal
BGE Branch on Greater Than or Equal to Zero
BGT Branch on Greater
BHI Branch if Higher
BHS Branch if Higher or Same
BIT Bit Test
BLE Branch if Less than or Equai to Zero

49

Table 4-1. Instruction Set (Continued)

Instruction

BLO
BLS
BLT
BMI
BNE
8PL
BRA,
BAN
BSH
BvC
BvVS
CLR
CMP
COoM
Cwal
DAA
DEC
EOR
EXG
INC
JMP
JSR
LD
LEA
LSL
LSR
MUL
NEG
NOP
OR
PSH
PUL
ROL
ROR
RTI
RTS
SBC
SEX
5T
sus
SWiI
SYNC
TFR
T8T

Description
Branch an Lower
Branch on Lower or Same
Branch on Less than Zero
Branch on Minus
Branch Not Equal
Branch on Plus
Branch Always
Branch Never
Branch to Subroutine
Branch on Overflow Clear
Branch on Overflow Set
Clear
Compare Memory from a Register
Complement
Clear CC bits and Wait for Interrupt
Decimal Addition Adjust
Decrement
Exclusive OR
Exchange Registers
Increment
Jump
Jump to Subroutine
Load Register from Memory
Load Effective Address
Logical Shift Left
Logical Shift Right
Multiply
Negate
No Operation
Inclusive OR Memory into Register
Push Registers
Pull Registers
Rotate Left
Rotate Right
Return from Interrupt
Return from Subroutine
Subtract with Borrow
Sign Extend
Store Register into Memory
Subtract Memory from Register
Sacftware interrupt
Synchronize to External Event
Transter Register to Register
Test

The instruction set ¢an be functionally divided into five categories. They are:

8-Bit Accumulator and Memory Instructions
16-Bit Accumulator and Memory Instructions
Index Register/Stack Pointer Instructions

Branch Instructions
Miscellaneous Instructions

Tables 4-2 through 4-8 are listings of the M6809 instructions and their variations grouped

into the five categories listed.

Table 4-2. 8-Bit Accumulator and Memory Instructions

Instruction

Description

ADCA, ADCB

Add memary to accurnulator with carry

ADDA, ADDB

Add memory to accumulator

ANDA, ANDB

And memaory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory lteft

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

[BITA, BITE

Bit test memory with accumulator

CLR, CLRA, CLRB

Clear accumulator or memory location

CMPA, CMPB

Compare memory from accumulator

COM, COMA, COMB

Complement accumulator or memory location

DAA

Decimal adjust A accumulator

DEC, DECA, DECB

Decrement accumulator or mamory location

EORA, EORB

Exclusive ot memory with accumulator

EXG RY, B2

Exchange R1 with B2 {R1, R2=A, B, CC, DP}

INC, INCA, INCB

lncrement accurnulator or memaory focation

LDA, LDB

Load accumulator from memaory

Togical shift [eft accumulator or memory jocation

LSR, LSRA, LSRB

Logical shift right accumulator or memory location

MUL

Unsigned multiply tAx B—D)

NEG, NEGA, NEGB

Negate accurnulater or memory

ORA, ORB

Or memoty with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROA, RONA, RORB

Rotate accumulator or mamory right

SBCA, SBCB

Subtract memory from accumulator with borrow

STA, STB

Store accumuiator 1o mamroy

SUBA, SUBB

Subtract memary from accurnulator

TST, TSTA, TSTB

Test accumulator or memory location

TFR A1, A2

Transfer A1 to R2 (R1, R2=A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed ta {pulled from) either stack with PSHS, PSHU

{PLILS, PULU) instructions.

4-11

Table 4-3. 16-Bit Accumulator and Memory Instructions

Instruction Deacription
ADDD Add memaory to D accumulator
CMPD Comparg memory from D accumulator
EXG D, R Exchange D with X, ¥, S, U, or PC
LDD Load D accumulator from memory
SEX Sign Extend B accurmutator into A accumulator
STD Store D accumulator to memory
SUBD Subtract memory from D accumulator
TFR O, R Transfer Dto X, Y, 5, U, or PC
TFR R, D Transfer X, ¥, S, U, or PCto D

NOTE: D may be pushed (pulled) 10 sither stack with PSHS, PSHU {PULS, PULU)

instructions.

Table 4-4. Index/Stack Pointer instructions

Instruction Deacription
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register

[EXG AT, A2 Exchange I, X, ¥, 5, Uor PCwWith D, X, Y, &, U of PL

LEAS, LEAU Load eftective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LOU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, ¥, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, X, or PC onta user stack
PULS Pull A, B, CC, DP, D, X, Y, U, or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, ¥, 8, or PC from hardware stack
STS, 8TU Store stack pointer to memory
STX, STY Store index ragisier to memory
TFR R1, R2 Transfer D, X, ¥, 8, U, orPCto D, X, Y, 8, U, ar PC
ABX Add B accumulator to X {unsigned)

4-12

Table 4-5. Branch Instructions |

Instruction | Description ;
SIMPLE BRANCHES i
BEQ, LBEQ Branch if equal |
BNE, LBNE Branch if not equal |
BMI, LEMI Branch if minus l
BPL, LBPL Branch if pius
BCS, LBCS Branch if carry set
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow claar
SIGNED BRANCHES
BGT, LBGT Branch if greater (signad)
8VS, LBVS Branch if invalid twos complement result
B8GE, LBGE Branch if greater than or equal {signed}
8EQ, LBEQ Branch if equal
BNE, LBNE Branch if not equat
BLE, LBLE Branch if less than or equal {signed}
BVC, LBVC Branch if valid twos complement result
BLT, LBLT Branch if less than isigned)
UNSIGNED BRANCHES
BH1, LBHI Branch if higher {unsigned)
BCC, LBCC Branch if higher or same (unsigned}
BHS, LBHS Branch if higher or same {unsigned}
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or sama {unsigned)
BCS, LBCS Branch if lower {unsigned}
BLO, LBLO Branch If fower (unsignea)
OTHER BRANCHES
"BSR, LBSR Branch to subroutine
[BRA, LBRA Branch always !
[BRN,_LBRN Branch never :
Table 4-6. Miscellaneous Instructions "
Instruction Description |
ANDCC AND condition code register |
[CWAI AND condition code register, then wait for interrupt
NOP No operation
QRCC CR condition code register
JMP Jump
JSR Jump 1o subrouting
ATI Return from interrupt
RTS Return from subroutine
SWI, SWiZ, SWI3 Software interrupt {absolute indirect
SYNC Synchronize with interrupt line

4-13/4-14

APPENDIX A
INSTRUCTION SET DETAILS

A.1 INTRODUCTION

This appendix contains detailed information about each instruction in the MC6809 in-
struction set. They are arranged in an alphabetical order with the mnemonic heading set
in larger type for easy reference.

A.2 NOTATION

In the operation description for each instruction, symbols are used to indicate the opera-
tion. Table A-1 lists these symbois and their meanings. Abbreviations for the varlous
registers, bits, and bytes are also used. Table A-2 lists these abbreviations and their
meanings.

Table A-1. Operation Notation

Symbol Meaning
-— is transferred 1o
A Boolean AND
v Boolean OR
* Baolean exclusive OR
~ [Overingl Boclean NOT
: Concatenation

Arithmetic plus
- Arithmetic minus
X Arithmetic muitiply

A1

Table A-2.

Abbreviati
ACCA or A
ACCBorB
ACCAACCB or D
ACCX
CCR or CC
DPR or DP
EA

IFF

X or X
WoryY
LSN

M

M

MSN

PC

R

R

TEMP

xxH

xxL
Spor$§

Us or U

dd
oDDD

[}

Register Notation

Meaning
Accurmulator A
Accumulator B
Double accumulator D
Either accumulator A or B
Condition code register
Direct page register
Effective address
If and only if
Index register X
Index register Y
Least significant nibble
Memory location
Memory immediata
Maost significant nibble
Program countar
A register bafore the operation
A register after the oparation
Temporary storage location
Most signifcant byte of any 16-bit register
Least significant byte of any 16-bit register
Hardware Stack pointer
User Stack pointer

A memcry argumant with Immediate, Di-
rect, Extended, and indexed addressing
modes

A read-modify-write argument with Direct,
Indexed, and Extended addressing modes

The data pointed to by tha enclosed
(16-bit address)

8-bit branch offset

1B-bit branch offset
Immediate value follows
Hexadecimal value follows
Indirection

Indicates indexed addressing

ABX Add Accumulator B into Index Register X ABX

Source Form: ABX

Operatlon: IX'—IX+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B into index register X.

Addressing Mode: Inherent

A-3

ADC

Source Forms:
Operatlon:
Conditlon Codes:

Description:

Addressing Modes:

Add with Carry into Register ADC

ADCA P; ADCB P
R'—R + M+C

H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set iIf an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Adds the contents of the C (carry) bit and the memory byte into an
8-bit accumulator.

Iimmediate
Extended
Direct
Indexed

A-4

ADD (B‘Bit) Add Memory into Register ADD (8'Bit)

Source Forms: ADDA P; ADDB P
Operation: R—R+M

Condition Codes: H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set it a carry is generated; cleared otherwise.

Description: Adds the memory byte into an 8-bit accumulator.
Addressing Modes: Immediate

Extended

Direct

Indexed

A5

ADD (1 B'Bit) Add Memory into Register AD D (1 S'Bit)

Source Forms: ADDD P
Operation: R'~—R + M\M+1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Description: Adds the 16-bit memory value into the 16-bit accumulator
Addressing Modes: Immediate

Extended

Direct

Indexed

A-6

AND

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Logical AND Memory into Register AN D

ANDA P; ANDB P
R—RAM

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero, cleared otherwise.

V - Always cleared.

C — Not affected.

Performs the logical AND operation between the contents of an ac-
cumuiator and the contents of memory tocation M and the result is
stored in the accumulator.

Immediate
Extended
Direct
Indexed

A-7

AN D Logical AND Immediate Memory into Condition Code Register AN D

Source Form: ANDCC #xx

Operation: R—RAM!

Condition Codes: Affected according to the operation.

Description: Performs a logicat AND between the condition code register and the
timmediate byte specified in the instruction and places the result in

the condition code register.

Addressing Mode: Immediate

A-8

ASL

Source Forms:

Operation:

Conditlon Codes:

Description:

Addressing Modaes:

Arithmetic Shift Left ASL

ASL Q; ASLA; ASLB

G — (0

b7 +—— b0

H — Undefined

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts ali bits of the operand one place to the left. Bit zero is loaded
with a zero. Bit seven is shifted into the C (carry) bit.

inherent
Extended
Direct
Indexed

A-9

ASR Arithmetic Shift Right AS R

Source Forms: ASR Q; ASRA; ASRB

Operation: Ly
b? b0

Conditlon Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.
C — Loaded with bit zero of the original operand.

Description: Shifts all bits of the operand one place to the right. Bit seven Is held
constant. Bit zero is shifted into the C (carry) bit. .

Addressing Modes: Inherent
Extended
Direct
Indexed

A-10

B C C Branch on Carry Clear B C C

Source Forms: BCC dd; LBCC DDDD

Operation: TEMP— M|
IFF C=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a branch if it is clear.
Addressing Mode: Relative

Comments: Equivalent to BHS dd; LBHS DDDD

A-11

BCS Branch on Carry Set BCS

Source Forms: BCS dd; LBCS DDDD

Operation: TEMP—MI|
IFF C=1 then PC'—PC + TEMP

Condition Cons: Not affected.

Description: Tests the state of the C (carry) bit and causes a branch if it is set.
Addressing Mode: Relative

Comments: Equivalent to BLO dd; LBLO DDDD

A-12

BEQ

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Equal B EQ

BEQ dd; LBEQ DDDD

TEMP —Mi
IFF Z2=1 then PC’'—PC + TEMP

Not affected.

Tests the state of the Z (zero) bit and causes a branch if it is set.
When used after a subtract or compare operation, this instruction
will branch if the compared values, signed or unsigned, were exactly

the same.

Relative

A-13

N et T e

BGE

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch on Greater than or Equal to Zero BG E

BGE dd; LBGE DDDD

TEMP —MI
IFF [Ne V]=0 then PC'—PC + TEMP

Not affected.

Causes a branch if the N (negative) bit and the V (overflow) bit are
either both set or both clear. That is, branch if the sign of a valid
twos complement resuit is, or would be, positive. When used after a
subtract or compare operation on twos complement values, this in-
struction will branch if the register was greater than or equal to the
memory operand.

Relative

A-14

BGT

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch on Greater B GT

BGT dd; LBGT DDDD

TEMP—MI
IFF Z A [Ne V]=0 then PC'—PC + TEMP

Not affected.

Causes a branch if the N (negative) bit and V (overflow) bit are either
both set or both clear and the Z (zero) bit is clear. In other words,
branch if the sign of a valid twos complement result is, or would be,
positive and not zero. When used after a subtract or compare opera-
tion on twos compiement values, this instruction will branch if the
register was greater than the memory operand.

Relative

A-15

BHI

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch it Higher B H I

BHI dd; LBHI DDDD

TEMP—Mi
IFF [C v Z]=0 then PC’'—PC + TEMP

Not affected.

Causes a branch if the previous operation caused neither a carry nor
a zero result. When used after a subtract or compare operaticn on
unsigned binary values, this instruction wili branch if the register
was higher than the memory operand.

Relative

Generally not useful after INC/DEC, LD/TST, and TST/CLR/COM in-
structions.

A-16

BHS

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Comments:

Branch it Higher or Same B H s

BHS dd; LBHS DDDD

TEMP - M|
IFF C =0 then PC'~—PC + MI

Not affected.
Tests the state of the C (carry) bit and causes a branch if it is clear.
When used after a subtract or compare on unsigned binary values,

this instruction will branch if the register was higher than or the
same as the memory operand.

Relative
This is a duplicate assembly-language mnemonic for the single

machine instruction BCC. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-17

BIT

Source Form:
Operation:

Condition Codes:

Description:

Addressing Modes:

Bit Test B IT

Bit P
TEMP—RAM

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Performs the logical AND of the contents of accumulator A or B and
the contents of memory location M and modifies the condition
codes accordingly. The contents of accumulator A or B and memory
location M are not affected.

immediate
Extended
Direct
Indexed

A-18

BLE

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Less than or Equal to Zero B L E

BLE dd; LBLE DDDD

TEMP-—MI
IFF Z v [N® V]=1 then PC’'—PC + TEMP

Not affected.

Causes a branch if the exclusive OR of the N (negative) and V
(overflow) bits is 1 or if the Z (zero) bit is set. That is, branch if the
sign of a valid twos complement result is, or would be, negative.
When used after a subtract or compare operation on twos comple-
ment values, this instruction will branch if the register was less than
or equat to the memory operand.

Relative

A-19

BLO

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Comments:

Branch on Lower B LO

BLO dd; LBLO DDDD

TEMP—MI
IFF C=1 then PC'—PC + TEMP

Not affected.

Tests the state of the C (carry) bit and causes a branch if it is set.
When used after a subtract or compare on unsigned binary values,
this instruction will branch if the register was lower than the
memory operand.

Relative

This is a duplicate assembly-language mnemonic for the single

machine instruction BCS. Generally not useful after INC/DEC,
LD/ST, and TST/CLR/COM instructions.

A-20

BLS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Lower or Same B Ls
BLS dd; LBLS DDDD

TEMP—MI
IFF (C v 2)=1 then PC'—PC + TEMP

Not affected.

Causes a branch if the previous operation caused either a carry or a
zero result. When used after a subtract or compare operation on un-
signed binary values, this instruction will branch if the register was
lower than or the same as the memory operand.

Relative

Generally not useful after INC/DEC, LD/ST, and TST/CLR/COM in-
structions.

A-21

BLT

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch on Less than Zero B LT

BLT dd; LBLT DDDD

TEMP—MI
IFF [Ne V]=1 then PC’' - PC + TEMP

Not affected.

Causes a branch if either, but not both, of the N (negative) or V
(overflow) bits is set. That is, branch if the sign of a valid twos com-
plement result is, or would be, negative. When used after a subtract

or compare operation on twos complement binary values, this in-
struction will branch if the register was less than the memory

operand.

Relative

A-22

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Branch on Minus B M I

BMI dd; LBMI DDDD

TEMP--MI
IFF N =1 then PC’'~-PC + TEMP

Not atfected.

Tests the state of the N (negative) bit and causes a branch if set.
That is, branch if the sign of the twos complement result is negative.

Relative
When used after an operation on signed binary values, this instruc-

tion will branch if the result is minus. It is generally preferred to use
the LBLT instruction after signed operations.

A-23

B N E Branch Not Equal B N E

Source Forms: BNE dd; LBNE DDDD

Operation: TEMP «— M1
IFF Z=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a branch if it is clear.
When used after a subtract or compare operation on any binary
values, this instruction will branch if the register is, or would be, not
equal to the memory operand.

Addressing Mode: Relative

A-24

B P L Branch on Plus B P L

Source Forms: BPL dd; LBPL DDDD

Operatlon: TEMP—MI
IFF N=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the N (negative) bit and causes a branch if it is
clear. That is, branch if the sign of the twos complement result is
positive.

Addressing Mode: Relative

Comments: When used after an operation on signed binary values, this instruc-

tion will branch if the resuit (possibly invalid} is positive. It is general-
ly preferred to use the BGE instruction after signed operations.

A-25

BRA

Source Forms:

Operation:

Condition Codes:
Description:

Addressing Mode:

Branch Always

BRA dd; LBRA DDDD

TEMP—MI
PC'—PC + TEMP

Not affected.

Causes an unconditional branch.

Relative

A-26

BRA

B R N Branch Never B R N

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP «— Ml
Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is essentially a no opera-
tion, but has a bit pattern logically related to branch always.

Addressing Mode: Relative

A-27

BSR

Source Forms:

Operatlon:

Conditlon Codes:
Description:

Addressing Mode:

Comments:

Branch to Subroutine B S R

BSR dd; LBSR DDDD

TEMP— M
SP'—SP -1, (SP)~—PCL
SP'~SP -1, (SP)—PCH
PC'—PC + TEMP

Not affected.

The program counter is pushed onto the stack. The program counter
is then loaded with the sum of the program counter and the offset.

Relative

A return from subroutine (RTS) instruction is used to reverse this pro-
cess and must be the last instruction executed in a subroutine.

A-28

BVC

Source Forms:

Operation:

Condlition Codes:

Description:

Addressing Mode:

Branch on Overflow Clear BVC

BVC dd; LBVC DDDD

TEMP—MI|
IFF V =0 then PC'—PC + TEMP

Not affected.

Tests the state of the V (overflow) bit and causes a branch if it is
clear, That is, branch if the twos complement result was valid. When
used after an operation on twos complement binary values, this in-
struction will branch if there was no overflow.

Relative

A-29

BVS

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Branch on Overflow Set BVS

BVS dd; LBVS DDDD

TEMP—M|
IFF V=1 then PC'—PC + TEMP

Not affected.
Tests the state of the V (overflow) bit and causes a branch if it is set.
That is, branch if the twos complement result was invalid. When us-

ed after an operation on twos complement binary values, this in-
struction will branch if there was an overflow.

Relative

A-30

CLR Clear CLR

Source Form: CLRQ
Operation: TEMP~—M
M-—0016

Condition Codes: H — Not affected.
N - Always cleared.
Z — Always set.
V — Always cleared.
C — Always cleared.

Description: Accumulator A or B or memory location M is loaded with 00000000.
Note that the EA is read during this operation.

Addressing Modes: Inherent
Extended
Direct
Indexed

A-31

C M P (8' Bit) Compare Memory from Reglster CM P (8' Bit)

Source Forms: CMPA P; CMPB P
Operation: TEMP—R-M

Conditlon Codes: H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero, cleared otherwise.
V — Set it an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Compares the contents of memory location to the contents of the
specified register and sets the appropriate condition codes. Neither
memory location M nor the specified register is modified. The carry
flag represents a borrow and s set to the inverse of the resulting
binary carry.

Addressing Modes: Immaediate
Extended
Direct
Indexed

A-32

C M P (1 6' Bit) Compare Memory from Register CM P (1 6' Bit)

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

CMPD P; CMPX P; CMPY P; CMPU P; CMPS P
TEMP—R - MM +1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Compares the 16-bit contents of the concatenated memory locations
M:M + 1 to the contents of the specified register and sets the ap-
propriate condition codes. Neither the memory locations nor the
specified register is modified unless autoincrement or autodecre-
ment are used. The carry flag represents a borrow and is set to the
inverse of the resulting binary carry.

immediate
Extended
Direct
Indexed

A-33

COM

Source Forms:
Operatlon:
Condition Codes:

Description:

Addressing Modes:

Complement C 0 M

COM Q; COMA; COMB
M+—0O+M

H — Not affected.

N — Set If the result is negative; cleared otherwise.
Z - Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Always set.

Replaces the contents of memory location M or accumulator A or B
with its logical complement. When operating on unsigned values,
only BEQ and BNE branches can be expected to behave properly
following a COM instruction. When operating on twos complement
values, all signed branches are avallable.

Inherent
Extended
Direct
Indexed

A-34

CWAI

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Clear CC bits and Walt for Interrupt CWAI

CWAI #$XX E{F|IH|IIN|[Z{V|C

CCR+~—CCR A MI {Possibly clear masks)
Set E (entire state saved)
SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
SP'—S8P-1, (SP)~—USL
SP’+—SP -1, (SP)—USH
SP'—SP-1, (SP}—IYL
SP’—SP -1, (SP)~—IYH
SP’~—SP -1, (SP)—IXL
SP'—SP -1, (§P)~—IXH
SP'~—SP -1, (SP)—DPR
SP'—SP -1, (SP)— ACCB
SP'—SP -1, (SP)—ACCA
SP'—S8SP-1, (SP)—CCR

Affected according to the operation.

This instruction ANDs an immediate byte with the condition code
register which may clear the interrupt mask bits | and F, stacks the
entire machine state on the hardware stack and then looks for an in-
terrupt. When a non-masked interrupt occurs, no further machine
state information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC8800 CLI WAI se-
quencs, but does not place the buses in a high-impedance state. A
FIRQ (fast interrupt request) may enter its interrupt handler with its
entire machine state saved. The RTI {return from interrupt) instruc-
tion wiil automatically return the entire machine state after testing
the E (entire) bit of the recovered condition code register.

Immediate

The following immediate values will have the following results:
FF = enable neither
EF = enable TRQ
BF = enable FIRQ
AF =enable both

A-35

DAA

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Decimal Addition Adjust DAA

DAA

ACCA'+—ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each nibble
(BCD) digit is determined separately, and is either 6 or 0.

Least Significant Nibble
CF(LSN)=6IFF 1} C =1
or 2) LSN>9

Most Significant Nibble
CF(MSN)=8IFF 1) C=1

or 2) MSN>9

or 3) MSN>8 and LSN>9

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Undefined.

C — Set if a carry is generated or if the carry bit was set before the
operation; cleared otherwise.

The sequence of a single-byte add instruction on accumulator A
(either ADDA or ADCA) and a following decimai addition adjust in-
struction results in a BCD addition with an appropriate carry bit.
Both values to be added must be in proper BCD form (each nibble
such that; 0=<nibble=<8). Multiple-precision addition must add the
carry generated by this decimal addition adjust into the next higher
digit during the add operation (ADCA) immediately prior to the next
decimal addition adjust.

inherent

A-36

DEC

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Decrement

DEC Q; DECA; DECB

M'—M-—1

H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000; cleared otherwise.
C — Not affected.

Subtract one from the operand. The carry bit is not affected, thus
atlowing this instruction to be used as a loop counter in multiple-
precision computations. When operating on unsigned values, only
BEQ and BNE branches can be expected to behave consistently.,
When operating on twos complement values, all signed branches
are available.

Inherent
Extended
Direct
Indexed

EO R Exclusive OR EO R |

Source Forms: EORA P; EORB P
Oporation: R'—RaM

Conditlon Codes: H — Not affected.
N - Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: The contents of memory location M is exclusive ORed into an 8-bit
register.

Addressing Modes: immediate
Extended
Direct
' Indexed

A-38

EXG

Source Form:
Opeoration:

Condition Codes:

Description:

Addressing Mode:

Exchange Registers EXG

EXG R1,R2
R1-R2

Not affected (unless one of the registers is the condition code
register).

Exchanges data between two designated registers. Bits 3-0 of the
postbyte define one register, while bits 7-4 define the other, as
follows:

0000 = A:B 1000=A

0001 =X 1001=B
0010=Y 110 =CCR

0011 =US 1011 =DPR
0100=SP 1100 = Undefined
0101 =PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined

Only like size registers may be exchanged. (8-bit with 8-bit or 16-bit
with 16-bit.)

Immediate

A-39

INC

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Increment I N C

INC Q; INCA; INCB
M'—M+1

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set it the result is zero; cleared otherwise.

V — Set if the original operand was 01111111; cleared otherwise.
C — Not affected.

Adds to the operand. The carry bit is not affected, thus allowing this
instruction to be used as a loop counter in multiple-precision com-
putations. When operating on unsigned values, only the BEQ and
BNE branches can be expected to behave consistently. When
operating on twos complement values, all signed branches are cor-
rectly available.

inherent
Extended
Direct
indexed

A-40

JMP Jump JMP

Source Form: JMP EA

Operation: PC'—EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective address.
Addressing Modes: Extended

Direct
Indexed

J S R Jump to Subroutine J S R

Source Form: JSR EA

Operation: SP'—8P-1, (SP)—PCL
SP'—SP -1, (SP)~ PCH
PC'—EA

Condition Codes: Not affected.
Description: Program control is transferred to the effective address after storing

the return address on the hardware stack. A RTS instruction should
be the last executed instruction of the subroutine.

Addressing Modes: Extended
Direct
' Indexed
!

|

A-42

LD (8-Bit)

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Load Register from Memory L D (8' Bit)

LDAP; LDB P
R'—M

H — Not affected.

N — Set if the loaded data is negative; cleared otherwise.
Z — Set if the loaded data is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Loads the contents of memory location M into the designated
register.

Immediate
Extended
Direct
Indexed

A-43

LD (1 6' Bit) Load Register from Memory L D (1 6' Bit)

Source Forms: LDD P; LDX P: LDY P; LDS P; LDU P
Operation: R'~—MM +1

Condition Codes: H — Not affected.
N — Set if the loaded data is negative; cleared otheriwse.

Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Load the contents of the memory location M:M+1 into the
designated 16-bit register.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-44

LEA

Saurce Forms:
Operation:

Condition Codes:

Description:

Addressing Mode:

Comments:

Load Effective Address L EA

LEAX, LEAY, LEAS, LEAU
R'—EA

H — Not affected.

N — Not affected.

Z — LEAX, LEAY: Set if the result is zero; cleared otherwise.
LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.

Calculates the effective address from the indexed addressing mode
and places the address in an indexable register.

LEAX and LEAY affect the Z (zero) bit to allow use of these registers
as counters and for MC6800 INX/DEX compatibility.

LEAU and LEAS do not affect the Z bit to allow cleaning up the stack
while returning the Z bit as a parameter to a calling routine, and also
for MC6800 INS/DES compatibility.

Indexed

Due to the order in which effective addresses are calculated inter-
nally, the LEAX, X+ 4+ and LEAX, X + do not add 2 and 1 (respective-
ly) to the X register; but instead leave the X register unchanged. This
also applies to the Y, U, and S registers. For the expected results,
use the faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the following
table.

Instruction Operation Comment

LEAX 10, X X+10-X Adds 5-bit constant 10 to X
LEAX 500, X X+5800-X Adds 18-bit constant 500 to X

LEAY AY Y+A-Y Adds 8-bit accumulator to Y
LEAY D, Y Y+D-Y Adds 16-bit D accumulator to Y
LEAU -10,U U-10-U Subtracts 10 from U

LEAS -10,S S-10-8 Used to reserve area on stack
LEAS 10,8 S+10-8 Used to ‘clean up’ stack

LEAX 55 S+5-X Transfers as well as adds

LSL

Source Forms:

Operation:

Conditlon Codes:

Description:

Addressing Modes:

Comments:

Logical Shift Left LS L

LSL Q; LSLA; LSLB

C— L b
b7 b0

H — Undefined.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the original operand.

Shifts all bits of accumulator A or B or memory location M one place
to the ieft. Bit zero is loaded with a zero. Bit seven of accumulator A
or B or memory tocation M is shifted into the C (carry) bit.

Inherent
Extended
Direct
Indexed

This is a duplicate assembly-language mnemonic for the single
machine instruction ASL.

A-46

LSR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Logical Shiit Right LS R

LSR Q; LSRA; LSRB

O—»| —C

b7 b0

H — Not affected.

N — Always cleared.

Z — Set if the result is zero; cleared otherwise.
V — Not affected.

C — Loaded with bit zero of the original operand.

Performs a logical shift right on the operand. Shifts a zero into bit
seven and bit zero into the C (carry) bit.

Inherent
Extended
Direct
indexed

A-47

MUL

Source Form:
Operation:

Condition Codes:

Description:

Addressing Mode:
Comments:

Sl o

— MUL

MUL
ACCA":ACCE’ — AUCA x ACCB

H — Not affected.

N — Not affected

Z — Set if the resuR is 2000 cleared otherwise.

V — Not affected.

C — Set if ACCS bt 7 of result is set; cleared otherwise.

Muitiply the uneigned binary numbers in the accumulators and
place the result in both accumulators (ACCA contains the most-
significant byte of the result). Unsigned multiply allows multiple-
precision operations.

inherent

The C (carry) bit aliows rounding the most-significant byte through
the sequence: MUL, ADCA #0.

A-48

NEG

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Negate N EG

NEG Q; NEGA; NEGB
M+—0-M

H — Undefined.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if the original operand was 10000000.

C - Set if a borrow is generated; cleared otherwise.

Replaces the operand with its twos complement. The C (carry) bit
represents a borrow and is set to the inverse of the resulting binary
carry. Note that 8016 is replaced by itself and only in this case is the
V (overflow) bit set. The value 001g is also replaced by itself, and only
in this case is the C (carry) bit cleared.

Inherent
Extended
Direct

A-49

N 0 P No Operation N 0 P

Source Form: NOP
Operation: Not affected.

| Condition Codes: This instruction causes only the program counter to be incremented.
f No other registers or memory locations are affected.

Addressing Mode: Inherent

A-50

OR

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Inclusive OR Memory into Register 0 R

ORA P, ORB P
RR—RBRvM

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Performs an inclusive OR operation between the contents of ac-
cumulator A or B and the contents of memory location M and the
result is stored in accumulator A or B.

Immediate
Extended
Direct
Indexed

0 R inclusive OR Memory Immediate into Condition Code Register 0 R

Source Form: ORCC #XX

Operation: R'—Rv Ml

Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between the c;ontents of the
condition code registers and the immediate value, and the result is

placed in the condition code register. This instruction may be used
to set interrupt masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate

A-52

PS H S Push Registers on the Hardware Stack PS H S

Source Form: PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 bS5 b4 b3 b2 b1 bl
[rclu |y [x]op{B | Alcc|
push order~=«-a»

Operation: IFF b7 of postbyte set, then: SP'—8P -1, (SP)~—PCL
SP'—SP - 1, (SP)—PCH
IFF b6 of postbyte set, then: SP'—SP -1, (SP}—USL |
SP’—SP-1, (SP)—USH |
IFF b5 of postbyte set, then: SP'—SP -1, (SP)—IYL |
SP'—SP 1, (SP)—IYH |
IFF b4 of postbyte set, then: SP'~—SP -1, (SP)—IXL
SP'—8SP 1, (SP)~—IXH
IFF b3 of postbyte set, then: SP'—8P -1, (SP)—DPR
IFF b2 of postbyte set, then: SP'—SP -1, (SP)— ACCB
IFF b1 of postbyte set, then: SP'~—SP -1, (SP)~— ACCA
IFF b0 of postbyte set, then: SP’—SP -1, (SP)~— CCR

Condition Codes: Not affected.
Description: All, soms, or none of the processor registers are pushed onto the

hardware stack (with the exception of the hardware stack pointer
itself).

Addressing Mode: Immediate

Comments: A single register may be placed on the stack with the condition
codes set by doing an autodecrement store onto the stack (example:
STX,- -8).

A-53

PSH U Push Registers on the User Stack Ps H U

Source Form: PSHU register list
PSHU #LABEL
Postbyte:

b7 b6 b5 b4 b3 b2 bl b0
[PClu Y | x|prP{B{A]cCC|
push order----- -

Operation: IFF b7 of postbyte set, then: US'—US -1, (US}—PCL
Us'—Us -1, {US)—PCH
IFF b6 of postbyte set, then: US'—US -1, (US)—SPL
Us'—UuUs -1, {US)—SPH
IFF b5 of postbyte sat, then: US'—US -1, (US)—IYL
US'—US -1, (US)—IYH
IFF b4 of postbyte set, then: US'—US -1, (US)—IXL
US'—US —1, (US)—IXH
IFF b3 of postbyte set, then: US'—US -1, {US)—DPR
IFF b2 of postbyte set, then: US'—US -1, (US)—ACCB
IFF b1 of postbyte set, then: US'—US -1, {US)—ACCA
IFF b0 of postbyte set, then: U8’ +—US -1, (US)—CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers are pushed onto the
user stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate
Comments: A single register may be placed on the stack with the condition

codes set by doing an autodecrement store onto the stack (example:
STX ,— — Ul

A-54

PU LS Pull Reglsters from the Hardware Stack PU LS

Source Form: PULS register list
PULS #LLABEL
Postbyte:
b7 b6 b5 b4 b3 bZ b1 b0
[pPclulyY [x]prPlB | A[cc]
*—————— pull order

Operation: IFF b0 of postbyte set, then: CCR' —(SP), SP'—SP +1
IFF b1 of postbyte set, then: ACCA'~(SP), SP'~SP +1
IFF b2 of postbyte set, then: ACCB' «(SP), SP'~SP+1
IFF b3 of postbyte set, then: DPR' —(SP), SP'~—S8P+1
IFF b4 of postbyte set, then: IXH' «—{(SP), SP'~—SP+1

IXL' —{SP), SP'~—SP+1
IFF b5 of postbyte set, then: IYH' ~—{SP), SP'—SP+1
IYL' —(SP),SP'—SP+1
IFF b6 of postbyte set, then: USH' —(SP), SP'~—SP +1
USL’ —(SP), SP'~—SP+1
IFF b7 of postbyte set, then: PCH’' -—(SP), SP'—SP +1
PCL' ~—(SP), SP'—SP+1

!
Condition Codes: May be pulled from stack; not affected otherwise. I
Description: All, some, or none of the processor registers are putled from the !
hardware stack {with the exception of the hardware stack pointer
itself).
Addressing Mode: immediate
Comments: A single register may be pulled from the stack with condition codes

set by doing an autoincrement load from the stack (example:
LDX ,S+ +).

A-55

PULU PULU

Source Form:

Pull Registers from the User Stack

PULU register list
PULU #LABEL

Postbyte:

b7 b6 b5 b4 b3 b2 b1 bo

Pclu |y [x|pr|B [Ajcc
‘- pull order

Operation:

IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbhyte set, then:

CCR" —{US), US'—US +1
ACCA’ —(US), US'—US + 1
ACCB’ ~{US), US'—US +1

IFF b3 of postbyte set, then: DPR' «—{US), US'—US +1
IFF b4 of postbyte set, then: IXH' «—{US), US'—US +1
IXL' <+ (US), US'—US +1
IFF b5 of postbyte set, then: IYH' «—{US), US'—US +1
IYL" «—{US), US'—US +1
IFF b6 of postbyte set, then: SPH' —(US), US'—US +1
SPL" ~—{US), US'—US+1
IFF b7 of postbyte set, then. PCH —(US), US'—US +1
PCL' «—{US), US'—US +1

Condition Codes: May be pulited from stack; not affected otherwise.

Description: All, some, or none of the processor registers are pulled from the user

stack (with the exception of the user stack pointer itself).

Addressing Mode: Immediate
Comments: A single register may be pulied from the stack with condition codes
set by doing an autoincrement load from the stack {example:
LDX U+ +).

A-56

ROL

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Mode:

Rotate Left RO L

ROL Q; ROLA; ROLB

{1
> C |

b7 b0

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits six and
seven of the original operand.

C — Loaded with bit seven of the criginal operand.

Rotates all bits of the operand one place left through the C (carry)
bit. This is a 9-bit rotation.

inherent
Extended
Direct
Indexed

A-57

ROR

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

Rotate Right RO R

ROR Q; RORA; RORB

e

b7 * b0

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the previous operand.

Rotates all bits of the operand one place right through the C (carry}
bit. This is a 9-bit rotation.

Inherent
Extended
Direct
Indexed

A-58

RTI Return from Interrupt RTI

Source Form: RTI
Operation: CCR'~—(SP), SP'~—SP + 1, then

IFF CCR bit E is set, then: ACCA’'—(SP), SP'—S8P +1
ACCB' —(SP), SP'—SP +1
DPR’ «~(SP), SP'—SP+1
IXH* (8P}, SP'—SP + 1
IXL' «(SP}, SP'~—SP+1
IYH' < (SP), SP'—SP +1
IYL" <« (SP), SP'—SP +1
USH' -—(SP), SP'—SP+1
USL' —(SP),SP'—SP+1
PCH' ~—(SP), SP'—SP +1
PCL’ «(SP), SP'~—SP+1

IFF CCR bit E is clear, then: PCH' «—(SP), SP'— SP+ 1
PCL' - (SP), SP'~SP +1

Conditlon Codes: Recovered from the stack.

Description: The saved machine state is recovered from the hardware stack and
control is returned to the interrupted program. If the recovered E (en-
tire) bit is clear, it indicates that only a subset of the machine state
was saved (return address and condition codes) and only that subset
is recovered.

Addressing Mode: inherent

RTS Return from Subroutine RTS

Source Form: RTS

Operation: PCH' —(SP), SP'—SP +1
PCL'—(SP), SP’—SP +1

Condition Codes: Not affected.

Description: Program control is returned from the subroutine to the calling pro-
gram. The return address is pulled from the stack.

Addressing Mode: Inherent

A-60

SBC

Source Forms:
Operation:
Condition Codes:

Description:

Addressing Modes:

Subtract with Borrow S B C

SBCA P; SBCB P
R'—~R-M-C

H — Undefined.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Subtracts the contents of memory jocation M and the borrow (in the
C (carry) bit) from the contents of the designated 8-bit register, and
places the result in that register. The C bit represents a borrow and
is set to the inverse of the resulting binary carry.

Immediate

Extended

Direct |

Indexed '
i
i

S Ex Sign Extended S EX

Source Form: SEX

Operatlon: If bit seven of ACCB is set then ACCA’'~—FF1g
else ACCA’—001¢

Condition Codes: H — Not affected.
N — Set if the result Is negative; cleared otherwiss.
Z — Set It the result is zero; cleared otherwise.
V — Not affected.
C -— Not affected.

Description: This instruction transforms a twos complement 8-bit value in ac-
cumulator B into a twos complement 16-bit value in the D ac-
cumulator.

Addressing Mode: inherent

A-62

ST (8" B it) Store Register into Memory ST (8' B it)

Source Forms: STAP,STBP
Operation: M'—R

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Writes the contents of an 8-bit register into a memory location.
Addressing Modes: Extended

Direct

Indexed

A-63

ST (1 B'Bit) Store Register Into Memory ST (1 6'Bit)

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

STD P; STX P; STY P; STS P; STUP
MM+ 1R

H — Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.

Writes the contents of a 16-bit register into two consecutive memory
locations.

Extended
Direct
Indexed

A-64

S U B (8' Bit) Subtract Memory from Register S U B (8" B it)

Source Forms:

Operation:

Condition Codes:

Description:

Addressing Modes:

SUBA P; SUBB P
R'~—~R-M

H — Undefined. _

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Subtracts the value in memory location M from the contents of a
designated 8-bit register. The C (carry) bit represents a borsow and is
set to the inverse of the resulting binary carry.

Immediate
Extended
Direct
indexed

SU B (1 6'Bit) Subtract Memory from Register SU B (1 6'Bit)

Source Forms: SuUBD P
Operation: R'—R - M\M+1

Condition Codes: H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Description: Subtracts the value in memory location M:M + 1 from the contents of
a designated 16-bit register. The C (carry)} bit represents a borrow
and is set to the inverse of the resulting binary carry.

Addressing Modes: Immediate
Extended
Direct
Indexed

A-66

SWI Software Interrupt SW'

Source Form: SWi

Operation: Set £ (entire state will be saved)
SP'—SP-1, (SP)—PCL
SP'—SP-1, (SP)~PCH
SP'~—8SP -1, {(SP)—USL
SP'—S8SP-1, (SP)~—USH
SP'+—8P -1, (SP)—IYL
SP'—8P -1, (SP)~—IYH
SP'—8P-1, (SP)—IXL
SP'—SP -1, (SP)—IXH
SP'—SP-1, (SP)~—DPR
SP'—SP-1, (SP)—ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (8P)—CCR
Set |, F {mask interrupts)
PC’'— (FFFA)(FFFB)

Condition Codes: Not atfected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt vector. Both the normal
and fast interrupts are masked {(disabled).

Addressing Mode: Inherent

A-67

SWI2

Source Form:

Operation:

Condition Codes:

Description:

Addressing Mode:

Software Interrupt 2

SwWi2

Set E (entire state saved)
SP'—SP —1, (SP}—PCL
SP'—SP -1, (SP)—PCH
SP'—SP -1, (SP)~—USL
SP'—SP -1, (SP)~—USH
SP'—SP -1, (SP(—IYL
SP'~-SP -1, (SP)—IYH
SP' —SP -1, (SP)~IXL
SP'—SP -1, (SP)—IXH
SP’'~-SP -1, (SP)~DPR
SP'—SP -1, {SP)~— ACCB
SP'—SP -1, (SP)—ACCA
SP'—SP -1, (SP)~—CCR
PC’ — (FFF4).(FFF5)

Not affected.

SWI2

All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itself), and control
is transferred through the software interrupt 2 vector. This interrupt
is available to the end user and must not be used in packaged soft-
ware. This interrupt does not mask (disable) the normal and fast in-

terrupts.

Inherent

A-68

SW I 3 Software Interrupt 3 SWI 3

Source Form: SWI 3

Operation: Set E (entire state will be saved)
SP'—SP -1, (SP)~—PCL
SP'—SP-1, (SP)—PCH
SP'«—SP -1, (SP)~—USL
SP'—SP -1, (SP)—USH
SP'—SP -1, {SP)—IYL
SP'«~SP -1, (SP)~—IYH
SP'—SP -1, (SP)—IXL
SP'«~—8SP -1, (SP)—IXH
SP'—SP -1, (SP)—DPR
SP'—SP-1, (SP)~—ACCB
SP'—SP -1, (SP)~— ACCA
SP'+—SP -1, (SP)~—CCR
PC'— (FFF2){FFF3)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto the hardware stack
(with the exception of the hardware stack pointer itseif), and control
is transferred through the software interrupt 3 vector. This interrupt
does not mask (disable) the normal and fast interrupts.

Addressing Mode: Inherent

A-69

SYNC

Source Form:
Operation:
Conditlon Codes:

Description:

Addressing Mode:

Synchronize to External Event SY N C

SYNC
Stop processing instructions
Not affected.

When a SYNC instruction is excuted, the processor enters a syn-
chronizing state, stops processing instructions, and waits for an In-
terrupt. When an interrupt occurs, the synchronizing state is cleared
and processing continues. If the interrupt is enabled, and it lasts
three cycles or more, the processor will perform the interrupt
routine. if the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in the syn-
chronizing state, the address and data buses are in the high-
impedance state.

This instruction provides software synchronization with a hardware
process. Consider the foliowing example for high-speed acquisition
of data:

FAST SYNC WAIT FOR DATA
Iinterrupt!
LDA DISC DATA FROM DISC AND CLEAR INTERRUPT
STA X+ PUTIN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Ot course, enabl-
ed interrupts at this point may destroy the data transfer and, as
such, should represent only emergency conditions.

The same connection used for interrupt-driven I/O service may aiso
be used for high-speed data transfers by setting the interrupt mask
and using the SYNC instruction as the above example
demonstrates.

inherent

A-70

TFR

Source Form:
Operation:
Condition Code:

Description:

Addressing Mode:

Transfer Register to Register T F R

TFR R1, R2

R1—R2

Not affected unless R2 is the condition code register.

Transfers data between two designated registers. Bits 7-4 of the

postbyte define the source register, while bits 3-0 define the destina-
tion register, as follows:

0000=A:B 1000=A

0001 =X 1001 =B
0010=Y 1010=CCR
0011=US 1011=DPR
0100=8P 1100 = Undefined
0101 =PC 1101 = Undefined

0110 =Undefined 1110 =Undefined
0111 = Undefined 1111 = Undefined

Only like size registers may be transferred. (8-bit to 8-bit, or 16-bit to
16-bit.)

Immediate

A-71

TST

Source Forms:
Operation:

Condition Codes:

Description:

Addressing Modes:

Comments:

Test TST

TST Q, TSTA; TSTB
TEMP—M -0

H -— Not affected.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise,

V — Always cleared.

C — Not affected.

Set the N {negative) and Z {(zero) bits according to the contents of
memory location M, and clear the V (overflow) bit. The TST instruc-
tion provides only minimum information when testing unsigned
values; since no unsigned value is less than zero, BLO and BLS have
no utility. While BHI could be used after TST, it provides exactly the
same control as BNE, which is preferred. The signed branches are
available.

Inherent
Extended
Direct
Indexed

The MCB800 processor clears the C (carry) bit.

A-72

FIRQ

Operation:

Condition Codes:

Description:

Addressing Mode:

Fast Interrupt Request (Hardware Interrupt) FI RQ

\FF F bit clear, then: SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
Clear E (subset state is saved)
SP'+—-SP -1, (SP)—CCR
Set F, | (mask further interrupts)
PC’'—(FFFB6):(FFF7)

Not affected.

A FIRQ (fast interrupt request) with the F (fast interrupt request
mask) bit clear causes this interrupt sequence to occur at the end of
the current instruction. The program counter and condition code
register are pushed onto the hardware stack. Program control is
transferred through the fast interrupt request vector. An RTI {return
from interrupt) instruction returns the processor to the original task.
It is possible to enter the fast interrupt request routine with the en-
tire machine state saved if the fast interrupt request occurs after a
clear and wait for interrupt instruction. A normal interrupt request
has lower priority than the fast interrupt request and is prevented
from interrupting the fast interrupt request routine by automatic set-
ting of the I (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired. The fast
interrupt request allows operations on memory, TST, INC, DEC, etc.
instructions without the overhead of saving the entire machine state
on the stack.

Inherent

A-73

IRQ

Operation:

Condition Codes:

Description:

Addressing Mode:

Interrupt Request (Hardware Interrupt) I RQ

\FF | bit clear, then: SP'—SP -1, (SP)—PCL
SP'—SP -1, (SP)~—PCH
SP'—SP -1, (SP)—USL
SP'~-SP -1, (SP)—USH
SP'—SP -1, (SP)—IYL
SP'—SP -1, (SP)~-1YH
SP'—SP -1, (SP)~IXL
SP'—SP -1, (SP})—IXH
SP'+—SP -1, (SP)~—DPR
SP'—SP -1, (SP}—ACCB
SP'—SP -1, (SP)—ACCA
Set E (entire state saved)
SP'—SP -1, (SP)—CCR
Set I (mask further IRQ interrupts)
PC'—(FFF8):(FFF9)

Not affected.

If the | (interrupt request mask) bit is clear, a iow level on the IRQ in-
put causes this interrupt sequence to occur at the end of the current
instruction. Control is returned to the interrupted program using a
RTI (return from interrupt) instruction. A FIRQ (fast interrupt request)
may interrupt a normal 1RQ (interrupt request) routine and be
recognized anytime after the interrupt vector is taken.

Inherent

A-74

N M I Non-Maskable Interrupt (Hardware Interrupt) N M l

Operation: SP'~—SP -1, (SP)~—PCL
SP'—SP-1, (SP}—PCH
SP'—S8P -1, (SP)~—USL
SP'— 8P -1, (SP)—USH
SP'+—SP -1, (SP)—1YL
SP'+-8P -1, {SP)~—IYH
SP'~—8P -1, (SP)—IXL
SP'—S8P -1, (SP)«—IXH
SP'—SP -1, (SP)~DPR
SP'—SP-1, (SP)—ACCB
SP'—S8P -1, (SP)—ACCA
Set E {entire state save)
SP'—8P -1, {(SP)~—CCR
Set |, F {(mask interrupts)
PC’'—(FFFC):(FFFD)

Condition Codes: Not affected.

Description: A negative edge on the NMI (non-maskable interrupt) input causes
all of the processor’s registers (except the hardware stack pointer)
to be pushed onto the hardware stack, starting at the end of the cur-
rent instruction. Program control is transferred through the NMI vec-
tor. Successive negative edges on the NMI input will cause suc-
cessive NMI operations. Non-maskable interrupt operation can be
internaily blocked by a RESET operation and any non-maskable in-
terrupt that occurs will be latched. If this happens, the non-
maskabie interrupt operation will occur after the first load into the
stack pointer (LDS; TFR r,s; EXG r,s; etc.) after RESET.

Addressing Mode: Inherent

R ESTA RT Restart (Hardware Interrupt) R ESTA RT

Operation: CCR'— X1X1XXXX
DPR’'—001¢
PC'—(FFFE)(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after power-on) to start pro-
gram execution. The starting address is fetched from the restart vec-

tor.

Addressing Mode: Extended Indirect

A-76

