
Web Server Management: Running Apache 2.2 under
Linux

Bob Dowling
University of Cambridge Computing Service

rjd4@cam.ac.uk

Jon Warbrick
University of Cambridge Computing Service

jon.warbrick@ucs.cam.ac.uk

Web Server Management: Running Apache 2.2 under Linux
by Bob Dowling and Jon Warbrick

Installation: This course will first illustrate how to load the Apache package on a Linux server.
The course uses a SUSE Linux Enterprise Server version 10 (SLES 10) system. This section of
the course is Linux specific, and to a large extent SLES specific.

Configuration: The course will then demonstrate how to configure the web server from the
ground up. The course does not teach tweaking of the default configuration but rather the
writing of a configuration from scratch. The configuration will be suitable for a system running
multiple virtual hosts. This part of the course applies to Apache on any platform.

These notes, and supporting material such as copies of the configuration files used in the course,
are available at http://www-uxsup.csx.cam.ac.uk/~jw35/courses/apache/Questions from
web-server administrators in the University about running Apache, or other web matters, can
be sent to <web-support@ucs.cam.ac.uk>.

Chapter 1. Installing the software

In this chapter we will install the Apache web server package, and the packages on
which it depends, and we’ll briefly review the changes that doing so makes to the
system. The details of this chapter are SLES-specific, but the general approach applies
to any Linux system.

Installing the packages
We need to install the Apache package if we have not done so already. To do this we
will have to be root. We either log in as root or su to root. If you su please be sure to
use the - option to get the right environment.

$ /bin/su -
Password: password

#

SLES’s Apache package is called apache2. SLES comes with various tools which can
install and update packages, including rpm, yast2, and rug. We will use rug, which
can fetch packages, install them and resolve package interdependencies. We assume
that the system is already configured with details of a suitable installation source.

rug install apache2
Resolving Dependencies...

The following packages will be installed:
apache2 2.2.3-16.2 (SLES10-Updates)
apache2-prefork 2.2.3-16.2 (SLES10-Updates)

apache2-prefork-2.2.3-16.2.i586[SLES10-Updates] needed by
apache2-2.2.3-16.2.i586[SLES10-Updates]

libapr1 1.2.2-13.2 (http://bes.csi.cam.ac.uk/install/SLES10-i386?ali...
libapr1-1.2.2-13.2.i586[SUSE-Linux-Enterprise-Server-i386-10-0-200...

libapr-util1 1.2.2-13.2 (http://bes.csi.cam.ac.uk/install/SLES10-i38...
libapr-util1-1.2.2-13.2.i586[SUSE-Linux-Enterprise-Server-i386-10-...

Proceed with transaction? (y/N) y

Downloading Packages...

Transaction...

Transaction Finished

What happened here? First rug selected the most recent version of the apache2 pack-
age, and then it identified additional packages that will be needed by the one we
explicitly asked it to install, so-called ’dependencies’. One of these, apache2-prefork,
provides one particular flavour of the actual web server. Following confirmation from
us, rug then downloaded and installed .

If we had access to the necessary package files, perhaps from a shared server or be-
cause we had already downloaded them, then we could have simply installed them
using the rpm. However if we did that we’d have been responsible for selecting the
most recent version of each package, and also for identifying and resolving the de-
pendency issues.

1

Chapter 1. Installing the software

Changes made to the system
We should quickly examine some of the changes have been made to the system by the
installation of these packages. Between then, apache2 and apache2-prefork packages
have installed a web server (in /usr/sbin/) but they have also installed files in other
locations.

Locations added or changed by the installation:

• /etc/apache2/: this is where Apache expects to find its configuration files. Many
of the files installed here are part of SLES’s custom system for managing Apache,
which we won’t be using. However httpd.conf will be important because it con-
tains Apache’s main configuration. We’ll be doing lots of work on this file.

• /etc/init.d/apache2: is the script run at system startup, and other times, to start
and stop the Apache server

• /etc/logrotate.d/apache2: a configuration file to manage log file rotation. We’ll
come back to this later.

• /usr/lib/apache2/ and /usr/lib/apache2-prefork/: much of Apache’s func-
tionality is implemented as a series of plug-in modules. Much of this course will be
devoted to what they can do and how to get them to do it. Each one exists as a
library file and they are stored in this directory.

• /usr/share/apache2/: various resources that Apache can be configured to use
are stored in these directories.

• /var/log/apache2/: this (empty) directory is created as a place to store the log
files that the web server will write as it works. An apache2 subdirectory is used
because there will typically be more than one log file in use at any time. This sub-
directory holds them together. We will discuss log files in detail in Chapter 7.

In addition, the directory /srv/www was created by the base SLES install and pro-
vides the default location for files served by the web server. In particular, the htdocs
subdirectory, which is initially empty, is the basic website. Anything put here will ap-
pear on the website. See the Section called Quick and Dirty Web Server for how to get
a web site up and running as quickly as possible. Other subdirectories of /srv/www
support software that we won’t be covering in this course.

Note that the /srv/www directory tree is owned by root. Any changes to the website
as the system currently stands need to be done by root

Programs included with the web server

• /usr/sbin/ab2: This a stress-tester for the web server. Please do not stress-test
people’s servers without their permission.

• /usr/sbin/htdbm2, /usr/sbin/htdigest2, /usr/sbin/htpasswd2:
These manipulate user and password information for web
access controls. We will see htpasswd2 and htdigest2 later in
the Section called Access control by client identity in Chapter 10 but we will not be
considering the other commands in this course.

• /usr/sbin/logresolve2: If a log file contains IP addresses rather than DNS
names for clients then this program will run through the log file and write out
a copy with host names replacing IP addresses. Because it caches resolved
addresses it does this rather efficiently. We will be covering log files (and why
they might have IP addresses rather than host names) in Chapter 7.

• /usr/sbin/apache2ctl: This is the script that is provided by the Apache team to
simplify turning on and off the service. However, to keep the startup and shut-
down of the server consistent with the rest of the system the standard startup
scripts don’t use this for the main work.

• /usr/sbin/httpd2-prefork: This is the web server itself, normally symlinked to
/usr/sbin/httpd2.

2

Chapter 1. Installing the software

• /usr/sbin/rotatelogs2: This is an Apache utility providing for rotating log files.
However, it is not used by a SLES system because there is a system-wide log rota-
tion facility which is used instead for consistency with the rest of the system. This
will be considered in detail in the Section called Log rotation in Chapter 7.

• /usr/sbin/suexec2: This is a helper program for Apache that lets the server run
external programs (e.g. CGI programs) as a different user than the user running
the web service itself. As we will not be covering CGI programming in this course
we will not be making any use of this program. As it is a setuid root program, you
may want to remove it if you don’t need it.

• /usr/sbin/apxs2: This is a tool for building
Apache modules from source. We will use this in
the Section called University of Cambridge ’Raven’ authentication in Chapter 10
when we build a module to let our server use the University’s Raven
authentication service.

The ’2’ on the end of the names of these programs is a feature of SLES’s packag-
ing of Apache - it would allow Apache 1 and Apache 2 packages to coexist on the
same server. In many other installations the commands will not have the additional
’2’. They may also be in different locations, for example some may be in /usr/bin/
rather than /usr/sbin/.

Quick and Dirty Web Server
The majority of this course concerns the (re)configuration of the web server. How-
ever, we should briefly describe what a system administrator should do if he or she
is happy with the default (which is not a bad set of defaults, by the way).

If the system administrator is happy to do all the changes to the web site as root then
nothing more needs to be done other than turning on the web server.

To enable the web server (so that it gets started at system boot) the system adminis-
trator needs to use the chkconfig command.

chkconfig --list apache2
apache2 0:off 1:off 2:off 3:off 4:off 5:off 6:off
chkconfig apache2 on
chkconfig --list apache2
apache2 0:off 1:off 2:on 3:on 4:on 5:on 6:off

The next time the system is rebooted, the web server will be started. If you don’t
want to wait until a reboot, or don’t want to reboot, then it can be manually started
by running the script that would be run at boot time.

/etc/init.d/apache2 start
Starting httpd2 (prefork) done

If you take this easy approach then you need to know the following few facts.

• If the server’s DNS name is server then any file placed in
/srv/www/htdocs/some/path/here/file.html will be presented as URL
http://server/some/path/here/file.html.

• Two log files will be maintained in the directory /var/log/apache2 called
access_log and error_log. These will be rotated weekly or when their size
reaches 4MB, and up to 99 old log files will be kept providing they are less than a
year old.

You can make life much simpler for yourself (as the system administrator) if you cre-
ate a group of users who are allowed to edit the document tree /srv/www/htdocs/.
We cover the steps needed to achieve this later in the course.

3

Chapter 1. Installing the software

Apache documentation
Apache comes with a large amount of documentation which many people seem to
ignore! SLES provides a copy of the manual for the appropriate version of Apache in
the package apache2-manual. If you install this package and use the quick and dirty
approach above then a copy of the manual is available at http://server/manual/

rug install apache2-doc
Resolving Dependencies...

The following packages will be installed:
apache2-doc 2.2.3-16.2 (SLES10-Updates)

Downloading Packages...

Transaction...

Transaction Finished

If you don’t have local access to a copy of the manual, current
versions can always be found from the Apache Documentation Project
(http://httpd.apache.org/docs-project/).

4

Chapter 2. The site’s design

This chapter will describe the design of a web site that we will set as our goal for this
course and discuss a small amount of theory.

Site description:

We will describe the web site that we want to create. This will be a website with a
number of modern features. In particular we will demand the facility to run multiple
virtual hosts (that is, different websites running off the same server).

Virtual hosting:

There will be a brief diversion while we describe exactly how virtual hosting is pos-
sible. There are a variety of different ways to achieve this goal.

The server we want
We are going to describe the server in the terms that a manager would use to describe
it: rather vague. This is an excuse for this course to introduce new features one at a
time.

Sites:

We are told that the server must serve two web sites. One, www.dept.cam.ac.uk, for
a main department site and one, prg.dept.cam.ac.uk, for Department’s ’Prevarica-
tion Research Group’; the corresponding web pages will be under the control of two
different groups of users.

Facilities:

The “usual facilities” should be provided. This is too vague a specification in reality,
but it is typically all the average manager will ever ask for. In this course we will
assume that this means index pages, automatic directory listing, user home pages
and access controls. To illustrate how to create tied-down servers we will also design
the server to be this and no more.

Logging:

Logs should be kept for as long as possible. We will have to consider the DPA impli-
cations of this part of the specification.

One server, multiple ’virtual’ hosts
There are (at least) three different ways that a single web server, and a single copy of
Apache, can host more than one web site. The important issue here is how Apache
can work out which site is relevant for each request.

Multiple ports:

A web server can listen on more than the default TCP port (number 80) and offer dif-
ferent web sites on each port. To identify a non-standard port, its number must follow
the server name in the URL: http://www.dept.cam.ac.uk:port/some/path/here/.
Apache uses the port number of the incoming query to distinguish between web
sites. Beware that from some environments, particularly those behind firewalls or on
wireless networks, it may be difficult or impossible to access web servers running on
non-default ports.

5

Chapter 2. The site’s design

Multiple addresses:

A single system can have more than one IP address and each can have a different web
site attached to it. This leads to different server names appearing in standard URLs
(i.e. there’s no :port element in the URL) but the server names correspond to different
IP addresses of the system and correspond to different web sites. Apache uses the
destination IP address on the incoming query to distinguish web sites. Nowadays
this approach is not encouraged because IP addresses are in short supply.

Multiple aliases

Also known as name-based virtual hosting, this is the most common form of virtual
hosting. The server only has a single IP address, but different names in the DNS cor-
respond to that address. So www.dept.cam.ac.uk and prg.dept.cam.ac.uk both map
on to the same IP address and therefore the same server. This raises the question of
how the web server can distinguish requests to the two different web sites.

Structures of HTTP queries and responses
To answer this question, we need to consider, briefly, the nature of a web request.
Exactly what gets sent to a server when a URL is requested? (And for that matter,
what gets sent back?)

Here’s an example of what might get sent:

GET /index.html HTTP/1.1
Host: www.dept.cam.ac.uk
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB; rv:1.8.1.1) ...
Accept: text/xml,application/xml,application/xhtml+xml,text/html;...
Accept-Language: en-gb,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

To understand name-based virtual hosting consider just the first two lines. The GET
request only includes to the local element of the URL. The second line specifies the
host name that is being asked for it.

HTTP Query Structure

GET

The first line declares that this is a request from a client that wishes to read in-
formation from the server. GET is the most common HTTP method.

/index.html

The second term in the first line is the local element of the URL requested. Note
that the leading part of the URL containing the server name has been stripped
out.

HTTP/1.1

The final element declares that the query is couched in the language of version
1.1 of the HTTP standard.

Host: www.dept.cam.ac.uk

The second line indicates which server the query was addressed to. It is this
element of the query that allows a web server to distinguish between web sites

6

Chapter 2. The site’s design

based purely on their names, regardless of the port number(s) or IP address(es)
used.

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-GB; rv:1.8.1.1)
Gecko/20060601 Firefox/2.0.0.1 (Ubuntu-edgy)

This optional line identifies the browser. Some servers vary the output according
to this header, but you should remember that it is a hint and can be trivially
changed on many browsers.

In this case Mozilla identifies the browser as one of the Netscape/Mozilla fam-
ily and 5.0 ties it down to a version of Mozilla. Other information allows us to
identify that it is a browser is running under Linux on an Intel platform, that it
was built for the en-GB locale, and indicates the version numbers of the various
components.

Accept: text/xml,application/xml,application/xhtml+xml,text/html;
q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

This specifies the formats the browser can accept and how keen it is on them.
Servers can be configured to negotiate various different formats of response de-
pending on these parameters.

text/xml,application/xml,application/xhtml+xml means that the browser
is happy to accept MIME content types text/xml, application/xml, or
application/xhtml+xml; otherwise it will accept text/html but the qualifier
q=0.9 means that, given a choice, the browser would prefer to receive one of the
earlier types (default q=1.0) than text/html. text/plain means that it can accept
plain text too. The qualifier q=0.8 makes this less preferred than anything else.
The browser has a general preference for image/png. Finally it will accept any
format (*/*) but is not keen on them (q=0.5).

We will meet MIME content types again in Chapter 4.

Accept-Language: en-gb,en;q=0.7,es;q=0.3

Just as it is possible to negotiate formats it is possible to negotiate languages. A
page might appear in more than one language and the browser specifies what
languages it can cope with and how desirable they are. One of the authors of this
document is learning Spanish and has Spanish as a third choice in the language
selections after British English and any other sort of English.

Accept-Encoding: gzip, deflate

Just as there was negotiation over MIME content type there can also be nego-
tiation over MIME transfer encoding. This is a mechanism for the server and
browser to agree on a way to (typically) compress the data stream prior to trans-
fer.

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

The final topic for negotiation is the character set of any text that will be sent. In
this case, ISO Latin 1 is preferred, with UTF-8 and indeed everything else coming
second.

Connection: keep-alive

This tells the server that it need not close the network connection after sending
back the response to the query as other requests may be sent down the same con-
nection. As setting up and tearing down connections are expensive operations
this is a major efficiency boost.

Keep-Alive: 300

This instructs the server to keep the connection alive for 300 seconds in case
there are any more requests. After 300 seconds of idleness the server will drop

7

Chapter 2. The site’s design

the connection.

For the record, here is the response. To make the example work, I’ve installed a trivial
index.html web page. We will use this later.

HTTP/1.x 200 OK
Date: Wed, 21 Feb 2007 17:53:35 GMT
Server: Apache/2.2.3 (Linux/SUSE)
Last-Modified: Wed, 21 Feb 2007 17:53:33 GMT
Etag: "1c0e43-132-3caa4140"
Accept-Ranges: bytes
Content-Length: 306
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>The DEPT web site</title>
</head><body>
<h1>Welcome to DEPT</h1>
<p>This is the DEPT web site.</p>
</body>
</html>
</html>

8

Chapter 3. Getting started

Clean slate:

Rather than modify the existing default configuration file, we are going to delete it
and start from scratch. We will start by removing the existing configuration script.
This may seem dramatic but this course seeks to explain every single line of the con-
figuration file that will finally be written. After we delete the file we will note that the
web server won’t start.

Simplest configuration:

The aim of this section is to give us enough configuration so that the server will at
least start, even if it won’t do anything useful.

One more line

We will add one more line to the most basic configuration file we can have to turn off
many defaults so we can see them explicitly when we need them.

The least we can get away with
Deleting the configuration file is easy. Go on, you know you’ve always wanted to do
it! What’s the worst that could happen?

rm /etc/apache2/httpd.conf

The web server will not start now. First it will complain about not having a configu-
ration file. Perhaps we should have kept a backup...

/etc/init.d/apache2 start
/apache2/httpd.conf: No such file or directory
The command line was:
/usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf failed

Next, we will create an empty configuration file and see that that just changes the
error message.

touch /etc/apache2/httpd.conf
/etc/init.d/apache2 start
Starting httpd2 (prefork) no listening sockets available, shutting down
Unable to open logs
startproc: exit status of parent of /usr/sbin/httpd2-prefork: 1 failed

It must be admitted that as error messages go, “no listening sockets available, shut-
ting down” is a fairly obscure way of saying “you’ve not told me what to do”. Actu-
ally it means, “you’ve not told me to listen for any incoming requests so I might as
well quit now”.

We will start by detailing an absolutely minimal configuration file that gets the server
launched but nothing else.

Listen 80

The command to tell the server to listen for connections is Listen. This takes one
argument, specifying which interface and port to listen on. The default port assigned
to web services by the Internet authorities is port 80. Quoting just a port number

9

Chapter 3. Getting started

means to listen on that port number on every IP-enabled interface. Simply to launch
the web server this should be all we need!

/etc/init.d/apache2 start
Starting httpd2 (prefork) failed

Unfortunately, the launched web server then immediately shuts down. By default,
the web server logs error messages in an error long file. In SLES, as in many Linux
distributions, this will be /var/log/apache2/error_log. We can look in there for
clues as to what we need next.

[Wed Feb 21 15:54:58 2007] [alert] (2)No such file or directory:
getpwuid: couldn’t determine user name from uid 4294967295,
you probably need to modify the User directive

What does this error message mean? It means that the web server needs to know who
to run as. A standard SLES install comes pre-configured with a user wwwrun and a
group www for the web server. We need to tell it to use them. This is done with the
User and Group commands in the configuration file.

User wwwrun
Group www

While we are at it, we add one “unnecessary” line which has the effect of turning off
various settings which default to being on. We do this for two reasons. The first is
didactic; we want to meet these options explicitly when they become relevant rather
than relying on defaults. The second is our decision to provide what was specified
and no more. This line will turn off everything and we must explicitly turn on what
we want.

Listen 80
User wwwrun
Group www
Options None

And if we start the web server now, with this four line configuration file, it launches
just fine and stays running.

/etc/init.d/apache2 start
Starting httpd2 (prefork) done
tail -1 /var/log/apache2/error_log
[Wed Feb 21 16:31:46 2007] [notice] Apache/2.2.3 (Linux/SUSE) configured --
resuming normal operations
ps -ef | grep apache2
root 6377 1 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
wwwrun 6378 6377 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
wwwrun 6379 6377 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
wwwrun 6380 6377 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
wwwrun 6381 6377 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
wwwrun 6382 6377 0 16:31 ? 00:00:00 /usr/sbin/httpd2-prefork ...
root 6392 3260 0 16:34 pts/0 00:00:00 grep apache2

But, as the figure shows, it’s not a single daemon that gets launched. There are six of
them. The first column of the ps output gives the owner of the process and the second
gives the process ID or PID. One of the server processes is owned by user root and
the others by user wwwrun. That root-owned process is the parent process of all the
other processes. What happens is that the startup script that we manually invoked
launched the parent, root-owned process (PID 6377). It in turn launched five child
processes owned by wwwrun (PIDs 6378 - 6392).

10

Chapter 3. Getting started

Why? Well, the idea is that the parent process does not service any request at all. Its
sole purpose is to keep an eye on the child processes. If one of them dies for any
reason the parent decides whether or not to replace it. (If they have all been idle for
the past 48 hours it may decide that four processes are plenty.) If they are all kept too
busy the parent may choose to start up some more processes to share the load. The
set of child processes is called the server pool and is the traditional mechanism that
Apache has always used to provide rapid responses. This way of working is called
the pre-forked model.

There are other models, or MPMs (Multi-Processing Modules) as the Apache documen-
tation calls them, other than pre-forked but SLES has this enabled by default and it is
what we will use throughout the course.

At the moment, the server has nothing to serve. Every attempt to request a
page from it results in a 404, not found error. If we look in the error log file,
/var/log/apache2/error_logwe will see the error message:

[Wed Feb 21 16:39:34 2007] [error] [client 131.111.10.33] File does not exist:
/srv/www/htdocs/index.html

which at least looks promising.

Syntax summary: Getting launched

Listen

This specifies the network interface the server should listen on. If only a port
is specified then it will listen on every active network address. (Typically the
system’s own network address and the loopback address.)

User

This specifies the system user ID that the server process should run as. This user
was created by the SLES system install.

11

Chapter 3. Getting started

Group

This specifies the system group ID that the server process should run as. This
group was created by the SLES system install.

Options

This command sets various parameters in the configuration. We will meet these
through the course as we turn them on.

Virtual hosts
However, as we are planning on hosting two web sites we ought to be thinking
about two locations, one for each value of the Host: header. We should also think
about what to do with requests that have neither www.dept.cam.ac.uk nor
prg.dept.cam.ac.uk as the Host: header’s value.

Use valid DNS names
The names used for the virtual hosts cannot just be made up. They
must be registered in the DNS for the IP address of the server being
used. Typically there will be a “real” name for the server (given by the
DNS A record) and a number of aliases for the web sites (given by DNS
CNAME records).

We shall create two subdirectories, WWW and PRG, of /srv/www for the two websites.
We will also create two groups, www-admin and prg-admin, which will contain the
people entitled to update the sites.

Setting up and using the WWW and PRG directories.

1. Creating the groups

groupadd -r www-admin
groupadd -r prg-admin

The -r option on groupadd sets up a system group. These are no different from
user groups in reality, but SLES assigns them from a different range of numeric
IDs to keep them apart.

2. Setting up the directories

Next we have to create /srv/www/WWW and /srv/www/PRG and set them up so that
these newly created groups have sway over them. After creating the directories
we need to do a number of things.

• We must change the group of the directories. It starts out controlled by the root
group.

• We must change the permissions so that this group can add things.

• We must set the permissions so that anything created in the directory also is
controlled by the webadmin group.

The change of group is done with the chgrp command and the two changes of
permissions can be done with a single use of the chmod command.

mkdir /srv/www/WWW
chgrp www-admin /srv/www/WWW
chmod g+ws /srv/www/WWW
mkdir /srv/www/PRG
chgrp prg-admin /srv/www/PRG
chmod g+ws /srv/www/PRG

3. Adding users to the groups

12

Chapter 3. Getting started

We will add the users alice and bob to the www-admin group and alice only to
the prg-admin group.

You can directly edit the file /etc/group to add users to the group line. They
should be comma-separated with no spaces and no trailing comma.

www-admin:!:106:alice,bob
prg-admin:!:107:alice

Alternatively, we can use the usermod command to change the groups that the
users are in. The -G option sets a user’s groups.

Warning
usermod ’s -G option sets the user’s groups. It does not add to
them. You must quote all the user’s groups. Any groups the user
was previously in that are not quoted will be lost by the user.

Suppose alice is in group alpha already. Then to add her to www-admin and prg-
admin we must state that she is in all the groups.

usermod -G alpha,www-admin,prg-admin alice

If bob is in no other group, then the command used is easier.

usermod -G www-admin bob

Note: The users will have to log in again to pick up the groups they have been added
to.

To let us know we have reached the right directory we will put a file, index.html in
each directory identifying it.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en">
<head>
<title>The DEPT web site</title>
</head><body>
<h1>Welcome to DEPT</h1>
<p>This is the DEPT web site.</p>
</body>
</html>

Now we must tell the web server to use these two directories appropriately. For this
we use the NameVirtualHost and VirtualHost commands.

NameVirtualHost *

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
</VirtualHost>

<VirtualHost *>
ServerName prg.dept.cam.ac.uk
DocumentRoot /srv/www/PRG
</VirtualHost>

To set up a named-based virtual host we add a section like the one shown in the
figure above to the configuration file. Two such sections should be added, one for
www and one for prg. So what does it mean?

13

Chapter 3. Getting started

Syntax summary: Virtual hosts

NameVirtualHost interface

This instructs the web server to run name-based virtual hosts on interface. If
the specified interface is * then all available interfaces are used.

<VirtualHost interface>

The VirtualHost section describes a single virtual host. Everything from the
<VirtualHost interface> to </VirtualHost> sets parameters for a single virtual
host. Parameters set outside the VirtualHost section normally provide default
values for all virtual hosts. The interface specified must match one previously
set up for named-based virtual hosting by a NameVirtualHost command.

ServerName

This sets the name of the server for the virtual host. If a query’s Host: header
matchs this then the virtual host block will be applied.

DocumentRoot

This command specifies where the server should look for its documents for the
particular virtual host. This is where we get to split up our various hosts into
different directories.

What happens if a query’s Host: header doesn’t match the server name of any Virtu-
alHost block? Apache treats the first VirtualHost block in the configuration file as the
default VirtualHost and will use this if nothing else matches. It can be a good idea
to set Apache up with a ’dummy’ first virtual host block that does nothing except
display an error message saying that it’s been impossible to work out which site a
request was intended for.

Reloading the configuration
Apache needs to be told to re-read its configuration file before it will take account of
changes, but it is not necessary to completely stop and restart our web server after
each change. A rather faster mechanism is to cause it to reread its file to note changes.
This can be done by using the reload option on the startup script.

/etc/init.d/apache2 reload
Reload httpd2 (graceful restart) done

We are now running one web server supporting two web sites. However, if we re-
quest the index.html page from www.dept.cam.ac.uk then we get the source of the
homepage and not the HTML rendering of it. We still have work to do.

14

Chapter 3. Getting started

Before we find out why, for completeness we should cover the assorted options that
can be passed to the startup script beyond the start, restart and reload options
we have met already.

Options to the startup script /etc/init.d/apache2

start

Starts the web server.

stop

Stops the web server.

restart

Stops and starts the web server.

try-restart

stop the web server and if this succeeds (i.e. if it was running before), start it
again.

status

Indicates whether or not the web server is running.

full-server-status

Dump a full status screen; requires lynx or w3m

reload or graceful

Causes a running web server to reread its configuration file(s) and to reopen its
log files.

15

Chapter 3. Getting started

help

Not much help!

configtest

Does not launch a web sever but forces it to parse the configuration file for syn-
tactic validity.

16

Chapter 4. Supporting MIME types

MIME types:

We will start with a very brief discussion about what MIME types are and in partic-
ular what MIME content types are. We will also see how they are associated with file
suffixes in a particular system configuration file.

Modules:

We will then introduce the concept of the module and, in particular, the module that
allows the web server to interpret MIME types.

The Content-Type: header
Let’s take another look at the headers that get sent back by a fully configured web
server.

HTTP/1.x 200 OK
Date: Wed, 21 Feb 2007 17:53:35 GMT
Server: Apache/2.2.3 (Linux/SUSE)
Last-Modified: Wed, 21 Feb 2007 17:53:33 GMT
Etag: "1c0e43-132-3caa4140"
Accept-Ranges: bytes
Content-Length: 306
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html

In particular note the Content-Type: header. This identifies the document served as
being of MIME content type text/html. This informs the browser that the document
should be parsed as HTML rather than as plain text. This identification of content
type is an important feature of HTTP that was lacking in many earlier transfer proto-
cols.

Now let’s look at the headers coming from our server as it currently stands.

HTTP/1.x 200 OK
Date: Wed, 21 Feb 2007 17:49:42 GMT
Server: Apache/2.2.3 (Linux/SUSE)
Last-Modified: Wed, 21 Feb 2007 17:34:30 GMT
Etag: "1c0e41-132-f8897580"
Accept-Ranges: bytes
Content-Length: 306
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/plain

The principal difference is that the Content-Type: header now reads text/plain.

MIME types on a SLES system
So, how does the system associate MIME content types with files? There are two
ways.

17

Chapter 4. Supporting MIME types

Content analysis

The first is to look in the file’s content and deduce the MIME content type from the
content.

You can see this mechanism in action with the file command. This command can give
a “human readable” description of a file’s content type or, with the -i option, it can
give a MIME content type.

$ file course.pdf
course.pdf: PDF document, version 1.2
$ file course.ps
course.ps: PostScript document text conforming at level 2.0
$ file -i course.ps
course.ps: application/postscript
$ file -i course.pdf
course.pdf: application/pdf

The file /usr/share/misc/magic is used to store the information about how to map
from content to MIME type. The file /usr/share/misc/magic.mime is used for the
more verbose descriptions.

File name analysis

The other approach is to use the file name. In particular it is traditional that files
should have particular suffices according to their MIME content types. This is the
most commonly used approach.

This approach is taken by other utilities than just the web server and there is a system
wide file giving the correspondence between file names and MIME content types.
This file is /etc/mime.types which is part of the SLES base system (as part of the
aaa-base package).

application/msword doc
application/pdf pdf
application/postscript ai eps ps
application/rtf rtf
application/x-bzip2 bz2
application/x-dvi dvi
application/xml
audio/mpeg mpga mp2 mp3
image/png png
model/vrml wrl vrml
text/html html htm
text/plain asc txt
video/mpeg mpeg mpg mpe
video/quicktime qt mov

Apache is capable of both modes of operation. We will use the latter as it is more
common. This is for historical reasons and is not a reflection on the relative values of
the two mechanisms.

Loading and using the MIME module

Modules:

All the various elements of web server functionality are split out into modules. These
are shared libraries that the web server loads when instructed to by its configuration
file. In turn, the presence of a module causes new commands to be available in the
configuration file corresponding to the newly available functionality.

18

Chapter 4. Supporting MIME types

We start by adding lines to the configuration file to load the module and identify the
file containing the filename to type mapping.

LoadModule mime_module /usr/lib/apache2/mod_mime.so
TypesConfig /etc/mime.types

The LoadModule command takes two arguments. The second is the filename of the
shared library that it needs. It’s normally possible to quote the pathname of the mod-
ule relative to Apache’s ServerRoot, often /etc/apache2. But SLES’s Apache is built
with an un-helpful ServerRoot of /srv/www so we have to use absolute pathnames
here. The first argument is the name of the module within that file. Normally you
need to consult the documentation to determine what a module’s name is.

A list of all the common modules, together with their library file names, module
names and brief descriptions is given in Appendix A at the end of these notes.

The TypesConfig command indicates the file that has the correspondences between
file name suffixes and MIME content types.

So how does our web server work now? The pages are now presented as HTML.

Syntax summary: Loading modules

LoadModule name library.so

Load the module named name found in the shared library file library.so.

Syntax summary: mime_module

TypesConfig file

This command specifies the name of the file that does the lookup from filename
suffix to MIME content type. On a SLES system this file is /etc/mime.types and
is installed by the aaa-base package.

19

Chapter 5. Setting Options

Symbolic links

It is demonstrated that the web server does not follow symbolic links unless explicitly
directed to do so.

Options FollowSymLinks

The instruction to make the server follow symbolic links is introduced.

Options

There is general discussion about the Options command.

Options SymLinksIfOwnerMatch

The more restrictive command is also introduced.

Symbolic links
We can now see the index.html file as expected but if we create a symbolic link
called main.html to index.html and ask for that we get a failure.

$ cd /srv/www/WWW/
$ ln -s index.html main.html
$ ls -l
ls -l
total 4
-rw-r--r-- 1 root www-admin 306 2007-02-21 17:34 index.html
lrwxrwxrwx 1 root www-admin 10 2007-02-21 18:36 main.html -> index.html

When we try to access the symbolic link we get a 403 “Forbidden” error. The web
server has found the symbolic link but has decided not to follow it.

20

Chapter 5. Setting Options

To instruct the web server to follow symbolic links we need to set an option. You will
recall we unset all options with Options None in the configuration file. Now we need
to turn on one of them.

We can do this with the command Options FollowSymLinks but this has a cer-
tain subtly we need to understand. The command Options FollowSymLinks sets
the FollowSymLinks option and unsets all of the others. The Options command fol-
lowed by a list of options is absolute; precisely the options specified will be set and
no others. For this reason we will introduce the syntax for setting (and unsetting)
individual options while leaving the others unchanged.

Options +FollowSymLinks

There is an analogous syntax with a minus sign for turning off options while leaving
others untouched.

21

Chapter 5. Setting Options

Because symbolic links might be used to circumvent access controls in the web
server there is a modified version of this option with the rather unwieldy name
SymLinksIfOwnerMatch. This instructs the web server to follow the symbolic link if
and only if the symbolic link’s owner (typically the user who created it) and the
target’s owner match.

It is worth mentioning that effects very similar to those provided by symlinks can also
be created using web server facilities by using the Alias command which we cover
later in the Section called Improving the listings in Chapter 6. Both have strengths and
weaknesses; using both at the same time can be a recipe for madness!

Syntax Summary: The Options command

Options option
1
option

2
option

3

Set options option
1
, option

2
and option

3
and unset all others.

Options +option
1
+option

2
+option

3

Set options option
1
, option

2
and option

3
leaving all other options unchanged.

Options -option
1
-option

2
-option

3

Unset options option
1
, option

2
and option

3
leaving all other unchanged.

Options +option
1
+option

2
-option

3

Set options option
1
, option

2
and unset option

3
leaving all other unchanged.

Syntax Summary: Options for Symbolic Links

Options FollowSymLinks

The server will follow any symbolic link.

22

Chapter 5. Setting Options

Options SymLinksIfOwnerMatch

The server will follow any symbolic link owned by the same user as its target.

23

Chapter 6. Handling directories

Directory URLs

Some URLs (typically those that end in /) correspond to directories rather than plain
files. We need to determine how to deal with these.

dir_module

The dir_module module provides the facility of using a default file (typically called
index.html) in a directory on behalf of the directory itself.

autoindex_module

The autoindex_module module provides the facility of generating a listing of the files
and subdirectories within a directory.

Combining approaches

We will also consider how to combine the two approaches so that an index.html file
is used if present and a directory listing is used if not.

The problem with directories
A document has a MIME content type. We’ve already seen that the URLs that
correspond to files can now be served with the correct MIME type, so long as the
file’s name has the appropriate suffix. But what about directories? In particular a
“top level” URL such as http://www.dept.cam.ac.uk/ will trigger a request for /.
There’s no such file so the server can’t serve it yet, let alone determine a MIME
content type for it.

24

Chapter 6. Handling directories

There are two solutions to this issue. The first, and simplest, is to nominate a filename
(such as index.html) and instruct that if a directory is requested which contains a
file with this name then that file should be treated as the target of the request. This is
the approach we will follow in the Section called Using default documents.

The other approach is to give a listing of the directory’s contents, typically in HTML
format. We will cover this in the Section called Automatic indexing of directories.

Using default documents

Loading the module

We will add lines to the configuration file to load the module and to set up a default
file. Because we want this functionality for both websites we place the instruction
outside and before the virtual host sections.

LoadModule dir_module /usr/lib/apache2/mod_dir.so
DirectoryIndex index.html index.htm

Note that we have a new command DirectoryIndex which is the only additional
command provided by dir_module. It is passed a list of the defaults to use if the
directory is looked for. If a directory is requested then the web server will look for
index.html in the directory because that filename is the first argument to the com-
mand. If index.html is missing then the server will look for index.htm, the second
quoted name. If neither is present then the web server will give a not found error.

Remember the server must reload its configuration to pick up these new instructions.

25

Chapter 6. Handling directories

Syntax summary: dir_module

DirectoryIndex

Specify the documents to be searched for given a directory query.

Document names are resolved relative to the directory queried unless they start
with a / when they are resolved relative to the document root.

Automatic indexing of directories
The second approach we will consider is that of automatically generating a list of
the entries in the directory. This used to be a popular approach to creating websites,
especially those mainly consisting of files to download, but it’s now falling out of
favour.

Basic listings
The relevant module is rather old and clunky, hailing back to the days when browsers
didn’t support tables in HTML, but it is in very widespread use so we need to con-
sider it. We will start by loading the module and removing dir_module (for simplicity
at this stage).

This is also the largest module (in terms of number of commands) we will cover in
this course. If you can cope with this one, you can cope with any of them.

LoadModule autoindex_module /usr/lib/apache2/mod_autoindex.so

If we just load the module then we see that, instead of getting a 404 “Not found”
error we get a 403 “Forbidden” error instead.

26

Chapter 6. Handling directories

This can be confusing, because ’Forbidden’ is more commonly associated with access
control. In this case you are seeing it because the web server has been configured
to handle directories but by default won’t do so. As with symbolic links above (see
Chapter 5) we need to set an option to instruct the module to do its job. Note that this
use of Options follows the loading of the module. Several options we will meet rely on
a specific module and their use must follow the LoadModule line in the configuration
file.

LoadModule autoindex_module /usr/lib/apache2/mod_autoindex.so
Options +Indexes

And now, if we ask for the / URL we get the list of the files and directories that appear
in the top-level directory. We’ve included some additional files to make things more
interesting.

27

Chapter 6. Handling directories

Improving the listings
By default, the index produced is a very simple one (an itemised list in HTML). The
module provides a number of commands to make it a bit more interesting. To see it
in operation we will add a simple IndexOptions command to our configuration file
to turn on “fancy indexing”.

IndexOptions FancyIndexing

Next we will suppress certain rows from the listing. Why would we want to do
this? Well, suppose the web developers edit their files in place (i.e. in the directory
managed by the web server) with an editor (emacs, say) that while editing a file
(alpha.html, say) creates work files (#alpha.html#) while it is running and leaves
behind backup files (alpha.html~) when it is finished. We don’t want these files ap-
pearing in the listings. We do this with the IndexIgnore command.

IndexIgnore "#*#" "*~" ".*"

Note that the expressions to be ignored are placed in quotes. This is not typically
necessary but under certain circumstances it is required. In this case the “#” character
is the comment character in httpd.conf files. If it was not enclosed in quotes then
everything on the IndexIgnore line beyond the first “#” would be ignored.

28

Chapter 6. Handling directories

Warning
Just because a file name is not in the listing does not mean that it
cannot be downloaded. If I see alpha.html and guess that there
might be an alpha.html~ I can still request it and the server
will serve it to me. We will deal with blocking these downloads in
the Section called Blocking access to files in Chapter 10.

In addition to having a listing of files, it is possible to place text above and below
the listing. This can either be in the form of plain text or full-blown HTML. We will
concentrate on the latter.

To add HTML above the listing the configuration must identify a header file. This file
must have a name that identifies it as having MIME content type text/html. In the
simple case, however, the file’s content, should not be a full HTML document but just
the HTML body component (without the leading BODY tag) for the text to appear
above the listing. Everything else will be automatically generated. We identify this
file (should it exist) with the HeaderName command.

HeaderName HEADER.html

A suitable HEADER.html file might look like this:

<p>Here is an HTML fragment.</p>

<p>It will automatically appear above the auto-generated file listing.</p>

Note that the HEADER.html file appears in the listing too. Typically this is not wanted
as it is already “doing its job” by having its contents appear at the top of the page.
The file HEADER.html would be a good candidate for the IndexIgnore command.

The next prettying up of the listing will be to add icons to the listing. Typically, icons
are used to represent the MIME content type of the file. We will use the icons in the
/usr/share/apache2/icons/ directory which are provided for this purpose.

We are immediately presented with a problem. The icons directory is not in either
web site’s DocumentRoot. We could copy the directory or symlink to it, but in this
case we are going to introduce another facility: aliasing. This comes courtesy of the
alias_module module and its Alias command.

LoadModule alias_module /usr/lib/apache2/mod_alias.so
Alias /icons/ /usr/share/apache2/icons/

The Alias command overrides the DocumentRoot for specific URLs. In this case any
URL whose local part starts with /icons/ (n.b. the trailing slash) will be looked up
in /usr/share/apache2/icons/. If we place this directive before the definitions of
the virtual hosts then it will apply to both.

Once the module has been loaded, the Alias command may be run multiple times,
both inside and outside of the virtual host sections. If it appears within a virtual host’s
paragraph then it applies to just that virtual host.

The file icon.sheet.png in the icons directory gives a quick lookup of all the icons
provided. Now we have access to the icons we need to know how to make use of
them in directory listings. The auto-indexing module provides a slew of commands
for this purpose. The trick to producing self-consistent indexes is to use as few as
possible. We will set up distinct icons for the following entries.

Categories with distinct icons

• HTML web pages

• Plain text pages

29

Chapter 6. Handling directories

• Any other “text” format

• Any image format

• Any audio format

• Any movie format

• PostScript

• Portable Document Format (PDF)

• Any other file content type

• Subdirectories

• The parent directory

The command that associates an icon with a MIME content type is AddIconByType.
However, we will also specify the ALT text for text-based browsers with the analo-
gous AddAltByType command. While we are at it, we will supply a DefaultIcon to
use when nothing else matches.

AddIconByType /icons/layout.gif text/html
AddAltByType "HTML file" text/html
AddIconByType /icons/text.gif text/plain
AddAltByType "Plain text" text/plain
AddIconByType /icons/generic.gif text/*
AddAltByType "Text" text/*
AddIconByType /icons/image2.gif image/*
AddAltByType "Static image" image/*
AddIconByType /icons/sound1.gif audio/*
AddAltByType "Audio" audio/*
AddIconByType /icons/movie.gif video/*
AddAltByType "Video" video/*
AddIconByType /icons/ps.gif application/postscript
AddAltByType "PostScript" application/postscript
AddIconByType /icons/pdf.gif application/pdf
AddAltByType "PDF" application/pdf

DefaultIcon /icons/ball.gray.gif

Note: The icons are supplied in GIF and PNG format. Normally I would recommend using
the PNG icons rather than the GIF ones since PNG is technically a better format and not
troubled by patent problems. However, whoever converted the GIFs to PNGs got the
background transparency wrong so you should use the GIF icons for the time being until
the PNGs are fixed.

We still have a problem with directories. There is no MIME content type for a di-
rectory so we must use other facilities. The following is a filthy hack introduced by
Apache version 1 and preserved into version 2.

AddIcon /icons/dir.gif "^^DIRECTORY^^"
AddAlt "Directory" "^^DIRECTORY^^"
AddIcon /icons/back.gif ".."
AddAlt "Up" ".."

Conclusion

And now our listings look a bit more colourful. But this is a lot of effort for limited
presentational value.

30

Chapter 6. Handling directories

Using an HTML table
We commented above that the data presented in the file listings is inherently tabular
and would be better presented as an HTML table. This is now available, as an “ex-
perimental feature” in versions of Apache beyond 2.0.23. (SLES 10 ships with 2.2.3).
The authors can find no mechanisms for setting the attributes of the table from within
Apache except to use stylesheets in the header file for the directory.

IndexOptions HTMLTable

31

Chapter 6. Handling directories

Summary of the auto-indexing module
In the summary of the commands provided by autoindex_module given below only
the commands and options discussed in this course are covered. There are many
more. If you can’t get the result you want with the commands given to date then
consult the full Apache documentation. You might get lucky.

Note: Commands and options that only make sense if fancy indexing is turned on are
marked with an “(f)”.

Syntax summary: autoindex_module

IndexOptions

Sets various parameters for how the index should look. The list below gives the
options.

IndexIgnore "name" "name" ...

Takes a list of filenames or shell-style wildcarded filenames for file names. Files
whose names match one or more of the patterns are not listed in the index.

32

Chapter 6. Handling directories

AddIconByType icon mime_type (f)

Specifies the icon that should be used for a particular MIME content type. The
MIME content type can either be fully specified (e.g. text/html) or partially spec-
ified (e.g. text/*).

AddAltByType "text" mime_type (f)

Specifies the ALT attribute in the tag. If you are expecting text-only
browsers you might want to keep this short and of constant width (three
characters is traditional). Alternatively, ditch the icons altogether.

DefaultIcon icon (f)

This specifies the icon to be used if nothing else matches. There does not appear
to be an equivalent DefaultAlt command.

AddIcon icon name (f)

This specifies an icon for a particular file name. Typically this should be avoided
but it is the best way to match the parent directory .. and other directories with
the pseudo-filename ^^DIRECTORY^^.

AddAlt "text" name (f)

This specifies ALT text alongside AddIcon’s images.

HeaderName name name ...

This identifies the file whose contents should be placed above the file listing.
The first file in the list that exists is used. These file names typically appear in the
IndexIgnore instruction.

The files can be either plain text, an HTML body fragment or an entire “top half”
of an HTML page. To stop the server adding its own HTML top half see the
IndexOptions option SupporessHTMLHeader.

ReadmeName name name ...

Exactly as HeaderName but it corresponds to the text below the listing. This can
only be plain text or an HTML body fragment.

Syntax summary: Options to IndexOptions

FancyIndexing

Turns on the four-column (by default) indexing mode rather than plain, bullet-
list indexing mode.

HTMLTable (f)

This instructs Apache to use an HTML table rather than a <PRE> block to present
the listing.

Using both modules
What happens if we run both modules? The answer is that the modules cooperate as
you might hope: if there is an index.html file then it is used; if there isn’t then the
directory is indexed automatically.

LoadModule dir_module /usr/lib/apache2/mod_dir.so
DirectoryIndex index.html index.htm

33

Chapter 6. Handling directories

Enable automatic indexing of directories
LoadModule autoindex_module /usr/lib/apache2/mod_autoindex.so
Options +Indexes
IndexOptions FancyIndexing
...

34

Chapter 7. Logging

Error log

We will examine the error log to see what is logged and to change the amount of
logging done.

log_config_module

We will load and use a module that allows us to configure exactly what we log for
each request.

Log file rotation

We will illustrate the SLES system-wide mechanism for log rotation and briefly men-
tion, and then discard, an Apache-specific way to do the same thing.

Legalities

There will be a brief description of the legal implications of keeping log files.

The error log
The error log file contains the error reports and warnings from the web server. Under
SLES this defaults to the file /var/log/apache2/error_log. The error log is often
overlooked, but when things are going wrong it will usually contain useful clues
about what the problem is.

By default, the directory /var/log/apache2 is readable only by root. You may want
to change this on your system. Within the directory, the files are created world-
readable. Only the directory’s permissions need be changed.

Let’s consider a number of the typical entries in the error log as it currently stands.

[Thu Feb 22 13:14:55 2007] [notice]
Graceful restart requested, doing restart
[Thu Feb 22 13:14:55 2007] [notice] Apache/2.2.3 (Linux/SUSE) configured --
resuming normal operations

Our first example will be seen in the log files from this course more than any other
lines (we hope!). The line that starts “Graceful restart requested” is the logged
entry that means we requested a reload of the configuration file.

The line that (hopefully) follows it is the line from Apache that says it has been
(re)configured and that it is “resuming normal operations”, i.e. serving web pages
again.

[Thu Feb 22 15:13:35 2007] [notice] caught SIGTERM, shutting down

SIGTERM is an operating system signal with a universal function. It is the instruction
to a process to shut down.

[Thu Feb 22 15:14:43 2007] [error] [client 131.111.10.33] File
does not exist: /srv/www/WWW/nonsuch.html

Another commonly occurring error_log line is the one corresponding to a request
for a file that does not exist.

So far, the error_log lines we have looked at have had a standard format:

35

Chapter 7. Logging

• [date]

• [severity]

• message

We can change the level of the logging (of formatted messages) with the LogLevel
command. Either globally, or within specific virtual hosts’ sections we can issue the
command LogLevel debug, say, to get more debugging.

Level Meaning Example

emerg System is unusable. The
entire web service has
failed.

“Child cannot open lock file.
Exiting”

alert Action must be taken
immediately. The entire
web service has either
failed already or is
imminent danger of
failing completely.

“getpwuid: couldn’t determine
user name from uid”

crit Critical condition. A child
server has failed and
others are likely to follow.

“socket: Failed to get a socket,
exiting child”

error A request on a single
request.

“File does not exist:
/var/www/WWW/nonesuch.html”

warn Warnings. “child process 10108 still did
not exit, sending a SIGTERM”

notice Normal behaviour but
worthy of notice.

“Apache/2.0.40 (Red Hat Linux)
configured -- resuming normal
operations”

info Purely informational “Server seems busy, (you may need
to increase StartServers, or
Min/MaxSpareServers)...”

debug Debugging. “Opening config file ...”

Messages issued from a running web server are well formatted. However, if you
make a syntax error in the httpd.conf file then the server won’t launch and the
error message is rather more stark.

Syntax error on line 21 of /etc/apache2/httpd.conf:
Invalid directory indexing option

It is also possible to move the error log file, or to do without the file altogether (but
still log errors).

LogLevel info
ErrorLog /var/log/apache2/error.log

The ErrorLog directive gives the name of the error log file. If the file name given
is “syslog” then logging is not done to /var/log/apache2/syslog but rather all
error logs are passed to the operating system’s system logger. This can be useful if
you arrange for your system logs to be transmitted off-machine to a central logging
engine which you want to receive Apache error logs too.

36

Chapter 7. Logging

Finally, if the file name starts with a pipe character, |, then what follows is interpreted
as a command which should be forked and executed and which has the error log lines
passed to it on its standard input.

Syntax summary: Error logging commands

ErrorLog logfile

If logfile begins with “/” then this file will be used for the error log.

If logfile is “syslog” then the error logs will be passed to the system logger
with facility local7.

If logfile is “syslog:facility” then the error logs will be passed to the system
logger with facility facility. This must be one of the facilities known to the
system logger; you can’t just make up your own.

If logfile begins with “|” then what follows will be run as a command to receive
the log lines on standard input.

Anything else is interpreted as a filename relative to the server root.

LogLevel level

Any errors generated at logging levels equal to or more serious than level will
be logged.

Access logs
To date the only log file we have met is the error log. There is no logging in our
current server configuration when things aren’t going wrong. Probably we want to
log the requests that are made of our server. These are the access logs.

We need to decide what we want to log and where to log it to. We may want more
than one log file for different sets of data.

As (almost) ever, the means to get this functionality is to load a module:
log_config_module from mod_log_config.so.

This provides us with one particularly useful command: CustomLog. This allows us
to specify what information to record and where to record it for each query/response
at the server. This power comes at the price of almost complete syntactic obscurity at
first glance. But in all honesty it’s not that bad.

Suppose we wanted to record just the following information about each query pro-
cessed by the server:

• Time & date

• URL requested

• Name of system making the request

• Whether the request was successful

LoadModule log_config_module modules/mod_log_config.so
CustomLog logs/request.log "%t %U %h %s"

Each of the elements beginning with a percentage character is called an escape code
and is converted into some piece of logged information. A complete list of the codes
is given in Appendix B.

37

Chapter 7. Logging

Four escape sequences

%t

The time of the request

%U

The URL requested

%h

The client hostname

%s

Status code of the request

To illustrate what they indicate and what they don’t, we will request three URLs and
note a number of problems in the logged output.

The requested URLs

• http://www.dept.cam.ac.uk/

• http://prg.dept.cam.ac.uk/

• http://www.dept.cam.ac.uk/gamma.html

[22/Feb/2007:15:51:43 +0000] /index.html 131.111.10.33 304
[22/Feb/2007:15:52:04 +0000] /index.html 131.111.10.33 304
[22/Feb/2007:15:52:19 +0000] /gamma.html 131.111.10.33 304

Notice how requests for the top-level directory are being logged as requests for
/index.html. It appears that apache applys at least some of it’s internal processing
to the value it loggs with %U, in this case using dir_module to locate a suitable
index document.

Problems with the output as it stands

• There is no record of whether www.dept.cam.ac.uk or prg.dept.cam.ac.uk was
queried.

• The hostnames are addresses, not names

The simplest way to address the issue of which website was queried is to move the
CustomLog lines into the virtual host sections and to have two different log files.
This gives them the flexibility to log different things too.

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
CustomLog /var/log/apache2/www.log "%t %U %h %s"
</VirtualHost>

If we really wanted a single log file with the virtual host information we could use
the %v escape code to record it.

To enable the use of hostnames rather than addresses, we must arrange for
the web server to do DNS lookups for the IP addresses on each incoming
query. We will do this with the HostnameLookups command. This command
is a core Apache command and not part of the logging module. In some
circumstances, hostnames will be looked up even without this command. For
example if you do any access controls based on host names as we will be in
the Section called Access control based on client IP address in Chapter 10. We will
set this on globally. If either website wanted to record IP addresses rather than
hostnames then it can do so by using %s rather than %h.

38

Chapter 7. Logging

HostnameLookups On

This results in log entries that look like this:

[22/Feb/2007:15:59:06 +0000] /index.html mnementh.csi.cam.ac.uk 200
[22/Feb/2007:15:58:40 +0000] /alpha.html mnementh.csi.cam.ac.uk 200
[22/Feb/2007:15:58:47 +0000] /beta.html mnementh.csi.cam.ac.uk 200

Common Log Format

A standard format for access log files is used by many utilities and replied on by the
web analysis programs. It is called “The Common Log Format” (CLF) and is shown
below.

CustomLog /var/log/apache2/www.log "%h %l %u %t \"%r\" %>s %b"

This produces log entries that look like this:

mnementh.csi.cam.ac.uk - - [22/Feb/2007:16:01:48 +0000] "GET / HTTP/1.1"
200 306
mnementh.csi.cam.ac.uk - - [22/Feb/2007:16:01:53 +0000] "GET /nonsuch.html
HTTP/1.1" 404 210

The escape sequences used in the Common Log Format

%h

The client’s hostname

%l

If the web server was doing IDENT (RFC1413 (ftp://ftp.rfc-editor.org/in-
notes/rfc1413.txt)) lookups then the returned userid would be
here.

%u

If the client had authenticated as a particular user for this request the
userid would be recorded here. We discuss authentication in detail in
the Section called Access control by client identity in Chapter 10.

%t

The time of the request.

%r

The first line of the query.

%>s

The status code finally returned to the client. There is a subtle difference be-
tween %s and %>s. In most cases they are identical. In cases where the URL gets
remapped then %s gives the status code of the initial lookup and %>s the code
of the final lookup (and the code passed back to the client).

%b

The number of data bytes (i.e. excluding the headers) sent back to the client in
the case of successful completion.

39

Chapter 7. Logging

Named formats

A common requirement is for all virtual hosts to log in the same format. To assist
with this it is possible to name a format definition and to then refer to the format’s
name in the CustomLog line.

LogFormat "%h %l %u %t \"%r\" %>s %b" clf

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
CustomLog /var/log/apache2/www.log clf
</VirtualHost>

Logging headers

One very useful escape code is %{fubar}i which will log the value of incoming
header fubar. We could use this as %{Host}i to record the queried Host header, for
example, to check our virtual hosting was working as expected.

The values of incoming headers are used to define a common alternative to “Com-
mon Log Format”. This is called “Combined Log Format” since it combines the Ac-
cess Log with the Referer and User Agent logs that were maintained in separate files
by early versions of Apache.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

Additional escape sequences used in the Combined Log Format

%{Referer}i

The value of the ’Referer:’ header which most browsers include in requests. This
contains the URL of the page that contain the link the user queried to bring them
here. This can be particularly useful to find remote pages that have bad links
onto your site.

%{User-Agent}i

The value of the ’User-Agent:’ header which most browsers include in requests.
If present, this normally identifies the browser being used, though it can be triv-
ially changed on most browsers.

Log rotation
It is one thing to create logs; it is quite another to cope with them. A log file grows
without bound unless action is taken and this can cause problems.

Problems with growing log files

• Larger files are harder to manipulate.

• File systems run out of space.

• The information you log may constitute personal data.

A solution to this generic problem of log file growth is log rotation. This involves the
regular (nightly or weekly, typically) moving of an existing log file to some other file
name and starting fresh with an empty log file. After a period the old log files get
thrown away.

Because this is a general issue, many Linux distributions (SLES included) include a
general solution that can be applied to any set of log files, not just the web server’s.

40

Chapter 7. Logging

There is an Apache-specific solution (which is provided by the rotatelogs command)
but we will use SLES’s generic solution, provided in the logrotate package.

Once each night the logrotate program reads in its configuration files telling it which
logs to rotate and how to do it. One of these files tells it to rotate Apache’s log files.

The main configuration file sets up the defaults and then reads in a directory of in-
structions for specific sets of log files from the /etc/logrotate.d directory.

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

uncomment these to switch compression to bzip2
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

former versions had to have the compresscommand set accordingly
#compressext .bz2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

no packages own wtmp -- we’ll rotate them here
#/var/log/wtmp {
monthly
create 0664 root utmp
rotate 1
#}

system-specific logs may be also be configured here.

/etc/logrotate.conf: commands

weekly

Each file should be rotated weekly. The log rotation job runs nightly, though, so
this can be changed to daily for a specific log file if desired.

The three commands that specify how often rotation should take place are daily,
weekly and monthly.

rotate 4

Keep four sets of log files. The comment is slightly inaccurate; four weeks’ worth
of logs will be kept if rotation is done weekly. If rotation is done daily then this
command means that four days’ worth of logs are kept.

create

After moving the main log file from logfile to logfile.1 a new, empty
logfile should be created.

41

Chapter 7. Logging

include /etc/logrotate.d

This command instructs the log rotation program to read in every file in this
directory. One of these files will correspond to the web server’s log files.

The /etc/logrotate.d/apache2 file (part of the apache2 package, not the logrotate
package), contains the instructions specific to the web server logs.

/var/log/apache2/access_log {
compress
dateext
maxage 365
rotate 99
size=+4096k
notifempty
missingok
create 644 root root
postrotate
/etc/init.d/apache2 reload

endscript
}

/var/log/apache2/error_log {
compress
dateext
maxage 365
rotate 99
size=+1024k
notifempty
missingok
create 644 root root
postrotate
/etc/init.d/apache2 reload

endscript
}

/etc/logrotate.d/apache2: commands

/var/log/httpd/access_log { ... }

This specifies that the commands within the curly brackets are to be applied to
the access log. A similar block applies to the error log.

compress

Rotated log files should be compressed. Logfiles, which can be very large, typi-
cally compress very well.

dateext

Archive old versions of log files adding a date extension like YYYYMMDD to
the filename.

maxage 365

Remove rotated logs older than 365 days. The age is only checked if a logfile is
to be rotated.

rotate 99

Delete old log files once they have been rotated 99 times.

size=+4096k

Rotate the file if it becomes bigger than 4MB, even if it was last rotated less than
a week ago.

42

Chapter 7. Logging

notifempty

This command instructs the system not to rotate the logs if the current main log
file is empty. See the discussion below about whether this is a good idea or not.

missingok

This is the instruction not to return an error if a particular log file is not present.

create 644 root root

After rotation, create a new logfile owned by user root and group root and with
read/write permissions for it’s owner and read permissions for everyone else.

postrotate ... endscript

Following the rotation of a log file the commands between postrotate and end-
script are run. This rotation program runs as root so care must be taken with the
commands that appear here.

/etc/init.d/apache2 reload

This instructs Apache to do a “Graceful Restart” in which the master web server
demon advises its children to exit after their current request and then re-reads
its configuration files and re-opens its log files.

There are two points which must be made about log rotation and changing its set-
tings. These are to do with the presence of editor backup files and the Data Protection
Act (1998).

Backup files

The command include /etc/logrotate.d will read in almost every file in that directory.
So if you edit the file apache2 and leave behind both apache2 and apache2.old then
both these files will be included and your log files will have the log rotation process
applied twice. Now, because of the weekly (or monthly or daily) commands the
rotation shouldn’t actually happen but it is still not certain that the right file will be
applied.

Data Protection Act (1998)
The contents of the log files may constitute personal data. If, along
with any information stored within the University, they identify individu-
als then they definitely do. As a result, you must have a privacy policy,
and stick to it . For this reason, the author recommends very strongly
that you remove the notifempty command. If your policy says that per-
sonal data is only kept for 28 days and it is kept for a week longer
because one week’s log files happened to be empty then you are in
breach of your privacy policy.

43

Chapter 8. Users’ own web pages

userdir_module

We will introduce the relevant module and the single command it provides.

Simple use

We will start with the simplest provision of users’ personal web pages by loading the
module and using it in its simplest form.

Complex use

We will then give an example of how it can be used to redirect lookups to an entirely
different system.

The principle of this chapter is to provide your users with the ability to create their
own web pages. The web pages may be located on the servers in question, or on a
different server altogether. As ever, there is a module that provides the extra func-
tionality. In the example below, we provides user pages in all the virtual hosts.

LoadModule userdir_module /usr/lib/apache2/mod_userdir.so
UserDir public_html

In this example, the command UserDir public_html causes any URL of
the form http://server/~bob/path/name.html to correspond to a file
~bob/public_html/path/name.html. (In this filename the expression “~bob”
means “the home directory of user bob” and is standard Unix notation. It is this that
the URL notation is based on.

The directory name public_html is not fixed and can be modified. Furthermore,
more complex mappings of username onto file name can be provided. Any instance
of “*” in the “directory name” will be replaced with the user’s ID.

If the directory name is actually a URL then, instead of the web server looking for
a local directory, it responds with an HTTP redirection, pointing the web client at a
new URL, typically on a different server.

UserDir argument Translated path

public_html ~bob/public_html/alpha/beta.html

www ~bob/www/alpha/beta.html

/var/www/users /var/www/users/bob/alpha/beta.html

/var/www/*/web /var/www/bob/web/alpha/beta.html

http://elsewhere/users http://elsewhere/users/bob/alpha/beta.html

http://elsewhere/*/web http://elsewhere/bob/web/alpha/beta.html

http://elsewhere/~*/ http://elsewhere/~bob/alpha/beta.html

It is possible to give a sequence of targets to the UserDir command. In this case they
will be searched in turn until one provides the server with the file or directory it is
looking for. Only the last entry in the list is allowed to be a redirection to another
server (i.e. a URL) because when the server reaches this one it sends back the redirec-
tion to the browser and never gets to discover if the file existed at the far end.

Note that the Apache user, wwwrun under SLES, must be able to read files if it is to
serve them. If it can’t read the files in a user’s public_html directory then all this
isn’t going to work.

44

Chapter 9. Delegated control

<Directory>

Applying a specialised set of commands just to a subdirectory of a web site from the
httpd.conf file.

Include

Splitting the main configuration file into components.

AccessFileName

Nominating a filename to handle control from the directory itself.

AddDescription

A commonly used command in the delegated configuration files to set the Descrip-
tion column in automatic indexes.

AllowOverride

Controlling what can be delegated

Customising only part of a web site
The user directory example was the first where we were passing control outside our
tidy server root. It may well be that we want a different configuration for these, rela-
tively uncontrolled, areas.

There are a number of aspects to this. You must decide what defaults you want
passed to these areas and what you want absolutely fixed. You also need to know
how to override the defaults where permitted.

45

Chapter 9. Delegated control

We will start by noting how to change settings from within the httpd.conf file for
a directory tree. In our current configuration file the directory index file name is
index.html. Suppose for a subdirectory of one of our web sites we wanted to change
it to be main.html. How would we do that?

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
CustomLog /var/log/apache2/www.log clf

<Directory /srv/www/WWW/bestiary>
DirectoryIndex main.html

</Directory>

</VirtualHost>

The <Directory dir> ... </Directory> identifies a series of commands which
should override or enhance the general settings for a specific subdirectory,
/var/www/WWW/bestiary in the example given in the figure.

46

Chapter 9. Delegated control

In the case of commands we have met, it is easy to imagine simply issuing them again
within a <Directory> block to override the previous settings. But what about turning
features on or off? A common example is to turn on or off the automatic generation
of indexes.

At the moment we can see the index of the games directory in the
www.dept.cam.ac.uk web site.

47

Chapter 9. Delegated control

We can turn indexing off with the Options command as follows.

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
CustomLog /var/log/apache2/www.log clf

<Directory /srv/www/WWW/bestiary>
DirectoryIndex main.html

</Directory>

<Directory /srv/www/WWW/games>
Options -Indexes

</Directory>

</VirtualHost>

And any future attempt to index games gives a 403, Forbidden, error.

48

Chapter 9. Delegated control

Using Access Files
But this isn’t delegating control. We have allowed for variation in subdirectories but
we have not truly delegated the controls to anyone who cannot rewrite the configu-
ration file and tell the server to reread it. We need a means to delegate control of a
subdirectory into the subdirectory itself.

The AccessFileName command names a file (or set of files) that will be looked for
within the directory being served and whose contents will be regarded as if they had
been inside a <Directory> block for that specific directory. The name of the command
tells of its origins; it was used to set the access rights for a directory tree. It is, however,
a fully generic delegated configuration, not just delegated access control.

The default file name used, .htaccess, also reflects its history as a delegated access
control mechanism. It is also traditionally a “dot file” to hide it from the index listings.
It’s far better to list the file name in a IndexIgnore statement and to give it a plain file
name so the conventional Unix utilities will actually show you it’s there.

So we could copy the contents of the <Directory /var/www/WWW/games> block
to /var/www/WWW/games/configuration and the contents of the <Directory
/var/www/WWW/bestiary> block to /var/www/WWW/bestiary/configuration.

There may be certain properties that you don’t want the users messing with. To this
end there is limited support for restricting what the users can override with their
delegated configurations. This is controlled via the AllowOverride command. For
the time being we will allow users to mess with everything.

49

Chapter 9. Delegated control

AccessFileName configuration
IndexIgnore configuration
<Directory /srv/www/>
AllowOverride All

</Directory>

A suitable configuration for the /games/ directory might be:

DirectoryIndex main.html index.html

This puts the control of the files in the hands of the people who have access to the
directories.

Once configured, these files are searched for and read by Apache every time it ac-
cesses the directories in which they appear. This has the advantage that you don’t
have to restart the web server to make changes to them visible (which is vital since
the people that use these files don’t normally have the rights to restart Apache). The
downside is that Apache has to do more work to serve every request.

The AllowOverride command is rather unsatisfactory - it allows the controllers of
httpd.conf to stop the Options command being used in the AccessFileName files,
but not to specify which options can and can’t be set. It can specify what you can do
with IndexOptions but not whether or not you can enable/disable indexes at all. It
has many limitations.

Simple uses of AllowOverride

AllowOverride None

The delegated configuration files aren’t even read. Their content is entirely ig-
nored.

AllowOverride All

Any command that is syntactically legal in the delegated configuration file is
allowed to have effect.

AllowOverride Options

The delegated configuration file is allowed to run the Options command. There
is no mechanism to control which of its arguments are permitted.

AllowOverride Indexes

The delegated configuration file is allowed to run the IndexOptions command
and all the commands that modify the index. This does not permit the use of
Options [+|-]Indexes; you need AllowOverride Options for that.

50

Chapter 10. Access control

Two ways

There are two ways to do access control: by the location of the client and by the
identity of the user operating the client.

Client location

There is a brief discussion of why this mechanism is fraught with difficulties caused
by proxies and the like. Then the commands to implement it are covered.

User identity

There is a discussion of the Basic and Digest protocols for user identification. Access
by user or group and user administration is then covered.

Raven

The University’s Raven Web Authentication System is briefly described.

Mixed working

The mixed case of authorising passwordless access from within the institution but
requiring authentication from outside will be given in detail.

Blocking names and directories

Application of access control to block access to files with particular names, and to
entire directories, is discussed.

Two posibilities
Now we move to the topic of access control. There are fundamentally two ways of
doing this: by client location and client identity.

Client location involves specifying whether access is permitted based on the IP ad-
dress or hostname of the client (i.e. browsing) system. When a request is received by
the server the IP address from which the request was received is known. This ad-
dress, or the hostname associated with it in the DNS, is checked against a set of rules
to determine whether or not the request should be honoured.

Proxy servers
Client location security is often used within the University for restricting
access to an institution or to the University, loosely defined as “any-
thing in cam.ac.uk”. This approach doesn’t work but is often regarded
as “good enough” to keep happy the politicians, lawyers and other peo-
ple who don’t understand technology. From the point of view of the
web administrator it also has the advantage of simplicity. The reason
it doesn’t work is that web proxies can forward a request from outside
Cambridge on to a server within Cambridge which sees the request
coming from within Cambridge and honours it. The Computing Service
has had its internal minutes cached on Google for the whole world to
read after a web proxy on the CS staff network went unnoticed.

51

Chapter 10. Access control

External users
It’s increasingly common for members of the University to use comput-
ers not connected to the University network - people with broadband at
home, people working from wireless networks while travelling, etc. In
some cases people use such connections almost exclusively and this
trend can be expected to increase. Security based on client location
denies these users access to information which they are intended to be
able to see.

Client identity involves challenging the user to quote some means of identifying him
or herself before permitting access to the document requested. This has the advan-
tage of dealing with proxies, but the disadvantage of requiring administration of the
userids and passwords. A common compromise is to create a single userid and pass-
word for a set of pages and pass the pair on to anyone who needs access. This has the
disadvantage that you don’t know which of your users read the pages, but often you
don’t want to know.

To avoid the password administration problem, the Computing Service provides a
central authentication system that web administrators can use if the want. This al-
lows members of the University to identify themselves using a centrally administered
user-id and password.

Access control based on client IP address
As ever, this functionality is provided by a module: authz_host_module from library
mod_authz_host.so (in versions of Apache before 2.2 this was access_module from
library mod_access.so).

This module offers us three commands: Allow, Deny and Order.

These restrictions need not cover the whole server, and typically don’t. They are in
any case examples of commands which must be placed within a <Directory> block
or delegated configuration file. If you want to cover the whole web server then the
document root must be used for the <Directory> block.

The Order command takes one of two arguments: Deny,Allow and Allow,Deny. No
whitespace is allowed around the comma. While it may look like a comma-delimited
list it is not; it is just a pair of rather strange looking arguments that have a comma as
one of their characters.

If the argument is Deny,Allow (the default) then the initial state is that all access is
allowed, then all the Deny statements are processed and then they are overridden by
the Allow statements.

If the argument is Allow,Deny then then the initial state is that all access is prohibited,
then all the Allow statements are processed and then they are overridden by the Deny
statements. This is best illustrated with some examples.

LoadModule authz_host_module /usr/lib/apache2/mod_authz_host.so
<Directory /srv/www/WWW/bestiary>
Order Allow,Deny
Deny from touble.csi.cam.ac.uk
Allow from cam.ac.uk
#Deny from csi.cam.ac.uk

</Directory>

Here is what happens when a request from trouble.csi.cam.ac.uk is processed.

52

Chapter 10. Access control

Stage Match? State

Initial All requests refused.

Allow from cam.ac.uk Rule matches. Access is allowed.

Deny from
trouble.cam.ac.uk

Rule matches. Access is denied.

Final Access is denied.

Note that the sequence of Allow and Deny commands is unimportant and that their
processing is entirely dependent on the Order.

The addresses given in the Allow and Deny statements can be specified in a variety
of ways. The examples given are for the Allow command but are equally applicable
to the Deny command.

Syntax summary: Options on the Allow command

Allow from cam.ac.uk

Access is allowed from any host whose name ends with cam.ac.uk.

Allow from 131.111.11.148

Access is allowed for queries originating from 131.111.11.148. Note that any
query redirected through a web proxy or cache will have the address of the web
proxy or cache.

Allow from 131.111

Access is allowed for queries originating from IP addresses whose first two bytes
are 131.111. Note that Cambridge has more networks than just this primary one.

Allow from 131.111.10.0/255.255.254

Access is allowed from any IP address which when masked by 255.255.254.0
gives 131.111.10.0.

Allow from 131.111.10.0/23

Access is allowed from any IP address whose first 23 bits form the address
131.111.10.0.

Access control by client identity
The alternative mechanism for restricting access to web pages is to demand a userid
and password from the user.

HTTP “Basic Authentication”

1. Browser sends request for a web page.

2. Server sends back a 401 error code and specifies a realm.

3. Browser prompts user for userid and password for the realm.

4. User quotes userid and password.

5. Browser repeats the initial request with an extra header quoting the userid and pass-
word.

6. Server sends the page if the userid/password are OK.

7. Browser sends request for another web page.

8. Server sends back a 401 error code and specifies the same realm.

53

Chapter 10. Access control

9. Browser recovers the userid and password it has for that realm and repeats the
initial request with the extra header.

10. Server sends the page.

Of course things are different if the userid and password don’t grant access to the
page. There are two ways this can happen. The user and password could match but
that user, now identified, might not be allowed access to the page. In this case the
server sends back a 403, Forbidden, error code. Alternatively, the userid and pass-
word might not match, in which case the server sends back the 401 code again and
the cycle of prompting the user repeats.

What we need to know is how to set up the server so that userids and passwords are
known to the server and certain pages are flagged as requiring user authentication.

To start with, we will need some modules: auth_basic_module, authn_file_module
and authz_user_module (in versions of Apache before 2.2 this functionality was all
provided by auth_module). We will then specify a mechanism to identify users and
finally specify policies regarding which identified users are allowed access.

So, first we need to identify users. This comes in two parts: the first involves setting
up userids and passwords at the server end and the second involves telling the web
server to use these for identifying users.

The userids and passwords are not the same as the login IDs. Indeed, they will often not
be login IDs at all. They are maintained with a distinct file which we will need tools
to manipulate. This file is traditionally called htpasswd though we have flexibility
regarding its name and location. A server administrator must also decide whether
to have a single password file for the whole server or one per virtual host (or even
for each subtree of the virtual host he wants to restrict access to). Granting a user a
userid and password noes not automatically assign that userid rights to access pages
(though we can configure policy so that it does). In this example, we will work with
a single userid/password file for both virtual hosts. It’s a shortcoming of the Unix
permissions model that we cannot specify that a file should be writable by members
of either one group or another. We will use a webadmin group to control access to
this file. Note that the file should not be servable by the web server.

groupadd -r webadmin
usermod -G www-admin,prg-admin,webadmin bob
mkdir /etc/apache2/access
chgrp webadmin /etc/apache2/access
chmod g+ws /etc/apache2/access
ls -ld /etc/apache2/access
drwxrwsr-x 2 root webadmin 4096 2007-02-23 12:16 /etc/apache2/access
touch /etc/apache2/access/passwd
chmod g+w /etc/apache2/access/passwd
ls -l /etc/apache2/access/passwd
-rw-rw-r-- 1 root webadmin 0 2007-02-23 12:17 /etc/apache2/access/passwd

We make the directory writable rather than just the individual files to make life easier
for programs that move files about within directories for backing up.

$ htpasswd2 -m /etc/apache2/access/passwd bob
New password: password

Re-type new password: password

Adding password for bob
$ cat /etc/apache2/access/passwd
bob:$apr1$kEDyP/..$n0DCjezTD.T.C.1s3td6..

htpasswd’s -m option causes the password file to use an MD5 password encod-
ing for the password. This is better than the traditional (and default) crypt algo-
rithm. This makes the password much harder to reverse engineer from the file but
all userid/password schemes are vulnerable to dictionary attacks and it is important
that the password file not be downloaded to make this attack much harder.

54

Chapter 10. Access control

Now that we have a way to identify users we need to specify policies. As with au-
thz_host_module the restrictions on access can only be specified in a <Directory>
block or in a delegated configuration file.

The simplest policy, called “valid user” is to permit access to any user who can au-
thenticate against the web password file.

LoadModule auth_basic_module /usr/lib/apache2/mod_auth_basic.so
LoadModule authn_file_module /usr/lib/apache2/mod_authn_file.so
LoadModule authz_user_module /usr/lib/apache2/mod_authz_user.so
LoadModule authz_user_module /usr/lib/apache2/mod_authz_user.so

<Directory /srv/www/WWW/bestiary>
AuthType Basic
AuthName "Restricted area"
AuthUserFile /etc/apache2/access/passwd
Require valid-user

</Directory>

Syntax summary: implementing the “valid user” policy

<Directory /var/www/>...</Directory>

This is the standard block for restricting a set of commands to a directory tree.

The commands in this block could appear in a delegated configuration file.

AuthType Basic

This defines the protocol used for the exchange of userid and password. Every
browser supports this protocol, but it does send passwords in plain text. A supe-
rior protocol, called “Digest” exists and is supported by modern browsers. See
the Section called Variations on a theme of user identification for details.

AuthName "Restricted area"

This identifies the realm applying to the files in the directory tree. This string
appears in the challenge for the userid and the password and is used by the
browser to work out which previously given userid and password it should send
without having to prompt the user again.

AuthUserFile /etc/apache2/access/passwd

This identifies the file used to contain userids and passwords. This cannot be the
system /etc/passwd file!

Require valid-user

This specifies the policy. Any user validated against the password file may access
the pages.

Given this setup (and a reload of the server’s configuration file) we can see the effect
it has on our web server. Our attempt to access the index.html page results in a
challenge for userid and password.

55

Chapter 10. Access control

Note that the prompt contains the phrase “Restricted area”. That text comes directly
from the AuthName command. If we fill in any valid userid and password from the
/etc/apache2/access/passwd file we can proceed.

Next we will consider other policies. We will assume that we have created three ad-
ditional web userids: tom, dick and harry.

<Directory /srv/www/WWW/bestiary>
AuthType Basic
AuthName "Restricted area"
AuthUserFile /etc/apache2/access/passwd
Require user bob tom

</Directory>

The Require user bob tom statement replaces the “valid user” policy with a “one of
these users” policy.

If you plan to use certain collections of users repeatedly for access control this scheme
can be taken further and groups of users can be defined. We can then specify that the
validated user be one of a series of groups.

First we must define our groups. We will create a groups file this time by hand be-
cause there are no tools analogous to htpasswd to manage the files for us.

managers: bob tom
workers: dick harry

We also need a module that knows about group files: authz_groupfile_module (in
versions of Apache before 2.2 this functionality was part of auth_module). We can
then change from a user list to a group list by specifying which group file to use and
which groups are permitted access.

LoadModule authz_groupfile_module /usr/lib/apache2/mod_authz_groupfile.so

<Directory /srv/www/WWW/bestiary>
AuthType Basic
AuthName "Restricted area"
AuthUserFile /etc/apache2/access/passwd
AuthGroupFile /etc/apache2/access/group
Require group managers

</Directory>

Syntax summary: Require

Require

The Require command specifies the policy of who is allowed access once identi-
fication is complete.

Require valid-user

Any authenticated user may have access to the pages.

56

Chapter 10. Access control

Require user user
1
user

2
user

3
...

Only one of the listed users may have access to the pages.

Require group group
1
group

2
group

3
...

Any user in one or more of the listed groups may have access to the pages.

If we wanted to delegate policy regarding access control by this mechanism we must
allow the override with AllowOverride AuthConfig.

Variations on a theme of user identification
What we described in the previous section is a way to provide user authenticated
access control. We used the Basic protocol and simple text files to store the userids,
passwords and groups.

The Basic protocol can be replaced with the Digest protocol. This comes from module
auth_digest_module from mod_auth_digest.so.

LoadModule auth_digest_module /usr/lib/apache2/mod_auth_digest.so
LoadModule authn_file_module /usr/lib/apache2/mod_authn_file.so
LoadModule authz_user_module /usr/lib/apache2/mod_authz_user.so
LoadModule authz_groupfile_module /usr/lib/apache2/mod_authz_groupfile.so

<Directory /srv/www/WWW/bestiary>
AuthType Digest
AuthName "Restricted area"
AuthDigestDomain /
AuthUserFile /etc/apache2/access/digest_passwd
AuthGroupFile /etc/apache2/access/group
Require group managers

</Directory>

The password file is replaced with one with a different structure, but the group file is
the same as it was before.

$ touch /etc/apache2/access/digest_password
$ htdigest /etc/apache2/access/digest_password "Restricted area" bob
Adding user bob in realm Restricted area
New password: password

Re-type new password: password

The other issue we mentioned was that text files were used to hold the users, pass-
words and groups. For a small number of users this is fine but if your users reach into
the thousands you may want to consider alternatives that are faster to search. Alter-
natively, you may already have an LDAP authentication mechanism and want to use
that. A series of other modules exist for providing authentication with passwords
and groups held in other formats.

University of Cambridge ’Raven’ authentication
Allocating new user names and passwords for access to sites is a problem. It requires
users to remember additional passwords, and requires administrators to create, issue,
re-issue and revoke accounts. Worse, basic authentication is insecure in the face of an
attacker who can monitor networks. Raven, a central authentication system provided
by the Computing Service, attempts to address these issues.

Under Apache, Raven is implemented by ucam_webauth_module, but since this
doesn’t come with Apache we first need to collect a copy and build it. Building
the module requires the apache2-devel and openssl-devel packages which we’ll also

57

Chapter 10. Access control

have to install if they are not already available. We also need a copy of the public
key that ucam_webauth_module uses to validate responses from the central Raven
server.

Building and installing ucam_webauth_module

1. Install the apache2-devel and openssl-develpackages

rug install apache2-devel openssl-devel
Resolving Dependencies...

The following packages will be installed:
apache2-devel 2.2.3-16.2 (SLES10-Updates)
libapr1-devel 1.2.2-13.2 (SLES10-Base)

libapr1-devel-1.2.2-13.2.i586[SLES10-Base] needed by apache2-devel...

libapr-util1-devel 1.2.2-13.2 (SLES10-Base)
libapr-util1-devel-1.2.2-13.2.i586[SLES10-Base] needed by apache2-...

openssl-devel 0.9.8a-18.13 (SLES10-Updates)

Proceed with transaction? (y/N) y

Downloading Packages...

Transaction...

Transaction Finished

2. Building and installing the module

The Raven module, and other Raven resources, is available from the Raven project
pages (http://raven.cam.ac.uk/project/).

tar zxf mod_ucam_webauth-1.4.0.tar.gz
cd mod_ucam_webauth-1.4.0
apxs2 -c -i -lcrypto mod_ucam_webauth.c
/usr/lib/apr-1/build/libtool --silent --mode=compile gcc -prefer-pic -
O2 -march=i586 -mtune=i686 -fmessage-length=0 -Wall -D_FORTIFY_SOURCE=
2 -g -fPIC -Wall -fno-strict-aliasing -DLDAP_DEPRECATED -DLINUX=2 -D_
REENTRANT -D_GNU_SOURCE -D_LARGEFILE64_SOURCE -DAP_DEBUG -pthread -I/u
sr/include/apache2 -I/usr/include -I/usr/include/apr-1 -c -o mod_
ucam_webauth.lo mod_ucam_webauth.c && touch mod_ucam_webauth.slo
/usr/lib/apr-1/build/libtool --silent --mode=link gcc -o mod_ucam_webaut
h.la -lcrypto -rpath /usr/lib/apache2 -module -avoid-version mod_uca
m_webauth.lo
/usr/share/apache2/build/instdso.sh SH_LIBTOOL=’/usr/lib/apr-1/build/lib
tool’ mod_ucam_webauth.la /usr/lib/apache2
/usr/lib/apr-1/build/libtool --mode=install cp mod_ucam_webauth.la /usr/
lib/apache2/
cp .libs/mod_ucam_webauth.so /usr/lib/apache2/mod_ucam_webauth.so
cp .libs/mod_ucam_webauth.lai /usr/lib/apache2/mod_ucam_webauth.la
cp .libs/mod_ucam_webauth.a /usr/lib/apache2/mod_ucam_webauth.a
ranlib /usr/lib/apache2/mod_ucam_webauth.a
chmod 644 /usr/lib/apache2/mod_ucam_webauth.a
PATH="$PATH:/sbin" ldconfig -n /usr/lib/apache2
--
Libraries have been installed in:

/usr/lib/apache2

If you ever happen to want to link against installed libraries
in a given directory, LIBDIR, you must either use libtool, and
specify the full pathname of the library, or use the ‘-LLIBDIR’
flag during linking and do at least one of the following:

- add LIBDIR to the ‘LD_LIBRARY_PATH’ environment variable

58

Chapter 10. Access control

during execution
- add LIBDIR to the ‘LD_RUN_PATH’ environment variable
during linking

- use the ‘-Wl,--rpath -Wl,LIBDIR’ linker flag
- have your system administrator add LIBDIR to ‘/etc/ld.so.conf’

See any operating system documentation about shared libraries for
more information, such as the ld(1) and ld.so(8) manual pages.
--
chmod 755 /usr/lib/apache2/mod_ucam_webauth.so

3. Installing the Raven key

Raven uses Public Key Cryptography to prevent replies from the central servers
from being forged. To validate these replies, ucam_webauth_module needs access
to the current Raven public key.

mkdir /etc/apache2/webauth_keys
cp pubkey2 /etc/apache2/webauth_keys

ucam_webauth_module is configured much like other authentication modules. It re-
lied on the services of the standard authz_user_module for to control user access and
on authz_groupfile_module for group file support so you must load them as well.
ucam_webauth_module also needs a random string to validate cookies that it sets so
you must provide that as well.

LoadModule authz_user_module /usr/lib/apache2/mod_authz_user.so
LoadModule authz_groupfile_module /usr/lib/apache2/mod_authz_groupfile.so

LoadModule ucam_webauth_module /usr/lib/apache2/mod_ucam_webauth.so
AACookieKey "now is the time for all good chickens to be counted"
AAKeyDir /etc/apache2/webauth_keys

<Directory /srv/www/WWW/bestiary>
AuthType Ucam-WebAuth
AuthGroupFile /etc/apache2/access/group
Require group managers

</Directory>

59

Chapter 10. Access control

Syntax summary: implementing Raven

AACookieKey "some string"

A random key used to protect cookies from tampering. Any unpredictable string
is fine. This key must be kept secret, since with knowledge of the key an attacker
can forge authentication.

AAKeyDir path

Pathname of a directory containing the public keys used by
ucam_webauth_module. In many cases this defaults to something sensible
under /etc/apache2; this isn’t the case with SLES’s Apache build.

AuthType Ucam-WebAuth

Selects Raven authentication.

60

Chapter 10. Access control

Mix and match: Location and Authentication
This brief section shows how the two mechanisms for controlling access, location and
identification, inter-operate. Specifically, there is a common desire in the University
to grant passwordless access from within the department or cam.ac.uk domain and
passworded access otherwise.

Suppose we wanted our website to be accessible from cam.ac.uk without a password
and with Raven authentication from elsewhere.

<Directory /srv/www/WWW/bestiary>
Order Allow,Deny
Allow from cam.ac.uk
AuthType Ucam-WebAuth
AuthGroupFile /etc/apache2/access/group
Require group managers
Satisfy any

</Directory>

The two worlds of access control are joined by the Satisfy command. This has two
possible options: Any and All. Satisfy Any requires the request to satisfy either the
location requirement or the authentication requirement. Satisfy All would require it
to satisfy both.

Blocking access to files
There is one last aspect of access control we must consider.
We have stopped certain files being listed in indexes in
the Section called Automatic indexing of directories in Chapter 6 but we warned that
this did not stop the files being downloaded if the client could guess the name.
This section will demonstrate how to block downloads of files matching certain
expressions in the same way as the IndexIgnore command stops files matching
those patterns being listed.

We can restrict certain commands to files that match regular expressions with the
<FilesMatch> ... </FilesMatch> directive. We can put a simple denial of all access
in this block.

In an ideal world, IndexIgnore and <FilesMatch> would accept the same syntax
for describing their files. Unfortunately they don’t, and this is a serious flaw in the
Apache Software Foundation’s way of handling their modules. IndexIgnore uses
shell-style wildcards, formally known as globbing, and <FilesMatch> uses sed-style
regular expressions.

Our current example configuration file has the line

IndexIgnore "#*#" "*~" "configuration"

and the equivalent <FilesMatch> regular expression is

(^#.*#$|.*~$|^configuration$)

An apropriate configuration would be:

<FilesMatch (^#.*#$|.*~$|^\..*|^configuration$)>
Order allow,deny
Deny from All

</FilesMatch>

61

Chapter 10. Access control

It’s also possible to block access to whole directories and directory trees. For
example we don’t want anyone to access any information outside /var/www/,
/usr/share/apache2/icons/ and /home/user/public_html. While the current
configuration only allows access to these directories, it’s possible that a mistake in
the future could mess this up. A better approach is to deny access to everything by
default and then to explicitly all access as required. While we are at it, we’ll also turn
off Options and AllowOverride by default and only enable them as needed.

<Directory />
Order Allow,Deny
Deny from all
Options None
AllowOverride None

</Directory>

<Directory /srv/www>
Order allow,deny
Allow from all
Options FollowSymlinks Indexes
AllowOverride All

</Directory>

<Directory /home/*/public_html>
Order Allow,Deny
Allow from all
Options Indexes

</Directory>

<Directory /usr/share/apache2/icons/>
Order Allow,Deny
Allow from all
Options Indexes

</Directory>

62

Chapter 11. Conclusion

Tidying up

Some re-ordering of the final configuration file.

What’s next?

A taster of other Computing Service courses, and of additional features available in
standard Apache.

A finished configuration file
We have illustrated a number of facilities in the Apache 2.2 web server which can be
used to create a web server serving multiple web sites.

The configuration file we have built as we go along is syntactically valid, but reflects
its didactic origins. Our final act will be to tidy it up.

The first thing typically done is to move all the LoadModule commands to a block
near the start of the file. That allows us to use all their commands in whatever order
we want further down the file.

The next thing we would do is to reorder the commands to exploit this freedom.
In our case the only major shuffle will be to put the IndexIgnore statement next to
the FilesMatch block that cover the same files. We have also added some magic to
make the Apache manual available under /manual/, moved some of the “deny by
default” rules to the top of the file, and indented the content of the various blocks for
readability.

Listen 80
User wwwrun
Group www

Load the modules needed for this file
LoadModule mime_module /usr/lib/apache2/mod_mime.so
LoadModule dir_module /usr/lib/apache2/mod_dir.so
LoadModule autoindex_module /usr/lib/apache2/mod_autoindex.so
LoadModule alias_module /usr/lib/apache2/mod_alias.so
LoadModule log_config_module /usr/lib/apache2/mod_log_config.so
LoadModule userdir_module /usr/lib/apache2/mod_userdir.so
LoadModule authz_host_module /usr/lib/apache2/mod_authz_host.so
LoadModule authz_user_module /usr/lib/apache2/mod_authz_user.so
LoadModule auth_basic_module /usr/lib/apache2/mod_auth_basic.so
LoadModule authn_file_module /usr/lib/apache2/mod_authn_file.so
LoadModule authz_groupfile_module /usr/lib/apache2/mod_authz_groupfile.so
LoadModule ucam_webauth_module /usr/lib/apache2/mod_ucam_webauth.so
LoadModule setenvif_module /usr/lib/apache2/mod_setenvif.so
LoadModule negotiation_module /usr/lib/apache2/mod_negotiation.so

Deny-by-default
<Directory />
Order Allow,Deny
Deny from all
Options None
AllowOverride None

</Directory>

<Directory /srv/www>
Order allow,deny
Allow from all

63

Chapter 11. Conclusion

Options FollowSymlinks Indexes
AllowOverride All

</Directory>

Set up MIME content type recognition
TypesConfig /etc/mime.types

Set up default documents for directory queries
DirectoryIndex index.html index.htm

Enable automatic indexing of directories
Options +Indexes

IndexOptions FancyIndexing
HeaderName HEADER.html

Suppress indexing and access to backup and working files
IndexIgnore "#*#" "*~" ".*" "configuration"
<FilesMatch (^#.*#$|.*~$|^\..*|^configuration$)>
Order allow,deny
Deny from All

</FilesMatch>

Set up access to standard icons
Alias /icons/ /usr/share/apache2/icons/
<Directory /usr/share/apache2/icons/>
Order Allow,Deny
Allow from all
Options Indexes

</Directory>

Set up icons and associated alt text
AddIconByType /icons/layout.gif text/html
AddAltByType "HTML file" text/html
AddIconByType /icons/text.gif text/plain
AddAltByType "Plain text" text/plain
AddIconByType /icons/generic.gif text/*
AddAltByType "Text" text/*
AddIconByType /icons/image2.gif image/*
AddAltByType "Static image" image/*
AddIconByType /icons/sound1.gif audio/*
AddAltByType "Audio" audio/*
AddIconByType /icons/movie.gif video/*
AddAltByType "Video" video/*
AddIconByType /icons/ps.gif application/postscript
AddAltByType "PostScript" application/postscript
AddIconByType /icons/pdf.gif application/pdf
AddAltByType "PDF" application/pdf

DefaultIcon /icons/ball.gray.gif

AddIcon /icons/dir.gif "^^DIRECTORY^^"
AddAlt "Directory" "^^DIRECTORY^^"
AddIcon /icons/back.gif ".."
AddAlt "Up" ".."

Display file listings as a table
IndexOptions HTMLTable

Set the error logging level to "info": informational messages.
The default is "warn": warnings.
LogLevel info

Specify the error log file - error.log in place of error_log
ErrorLog /var/log/apache2/error.log
LogFormat "%h %l %u %t \"%r\" %>s %b" clf

64

Chapter 11. Conclusion

We want hosts’ names rather than address in the logs
HostnameLookups On

Users’ own web pages
<Directory /home/*/public_html>
Order Allow,Deny
Allow from all
Options Indexes

</Directory>
UserDir public_html

Delegate control via "configuration" files
AccessFileName configuration
IndexIgnore configuration
<Directory /srv/www/>
AllowOverride All

</Directory>

Raven authentication config
AACookieKey "now is the time for all good chickens to be counted"
AAKeyDir /etc/apache2/webauth_keys

<Directory /srv/www/WWW/bestiary>
Order Allow,Deny
Allow from cam.ac.uk
AuthType Ucam-WebAuth
AuthGroupFile /etc/apache2/access/group
Require group managers
Satisfy any

</Directory>

Access to the Apache manual
AliasMatch ^/manual(?:/(?:de|en|es|fr|ja|ko|ru))?(/.*)?$ \

"/usr/share/apache2/manual$1"
<Directory "/usr/share/apache2/manual">

Options Indexes
AllowOverride None
Order allow,deny
Allow from all
<Files *.html>

SetHandler type-map
</Files>
SetEnvIf Request_URI ^/manual/(de|en|es|fr|ja|ko|ru)/ prefer-language=$1
RedirectMatch 301 ^/manual(?:/(de|en|es|fr|ja|ko|ru)){2,}(/.*)?$ \

/manual/$1$2
</Directory>

Set up name-based virtual hosting on all interfaces.
NameVirtualHost *

<VirtualHost *>
ServerName www.dept.cam.ac.uk
DocumentRoot /srv/www/WWW
CustomLog /var/log/apache2/www.log clf
</VirtualHost>

<VirtualHost *>
ServerName prg.dept.cam.ac.uk
DocumentRoot /srv/www/PRG
CustomLog /var/log/apache2/prg.log clf
</VirtualHost>

65

Chapter 11. Conclusion

What’s next?

Having completed this course you are now in a position to follow up by adding
modules that provide for extra facilities. The computing service has two follow-on
courses from this one that build on this foundation.

Follow-on web server courses

Web Server Management: Securing Access to Web Servers

This course introduces the use of the HTTPS (secure http) protocol used to pro-
tect communication between web browsers and web servers. This additional se-
curity is particularly appropriate when sensitive information is being transmit-
ted (passwords, credit card numbers, personal details, etc) or when the identity
of an end-user needs to be established securely.

The course is presented from the point of view of a web server administrator
who wishes to configure servers to support such communication. It provides
an overview of the https protocol and of related cryptographic components, in-
cluding public key and symmetric key encryption, message digests and digital
certificates as they relate to HTTPS. It also describes how to obtain certificates
for web servers, and demonstrates the configuration of an Apache server to use
HTTPS.

CGI Scripting for Programmers: Introduction

The Common Gateway Interface (CGI) underlies much of the modern web. It pro-
vides the most popular way by which web servers can respond to browser re-
quests by invoking programs and using the resulting output as their response.
CGI programs can make decisions based on information contained in browser
requests, and so can be used for various tasks, including dynamic page genera-
tion, processing fill-in forms, interfacing to databases, implementing ’shopping
carts’, etc.

This two-afternoon course covers the CGI itself, various aspects of HTML and
HTTP that are directly relevant to CGI programmers, and general CGI program-
ming issues including security. CGI programs can be written in a variety of lan-
guages, and their use is supported by most web servers. This course uses the
Perl scripting language to develop examples for use with an Apache web server
running under Linux. However the vast majority of the material covered is ap-
plicable to other languages and servers, and should be readily understandable
by anyone with programming experience. Some of the examples may be suitable
for general use.

In addition, there are a whole range of other features that are available in Apache
“out of the box” that may be of use in some circumstances.

Additional Apache features

Performance tuning

There are a huge range of configuration commands for customising Apache’s
performance. While the default settings of all these are fine for a small personal
site they will probably need adjusting for anything bigger.

Content negotiation

Apache can take advantage of facilities in HTTP to allow it to automatically serve
different content to different users. This is handled by an automatic process of
negotiation and can include varying languages, character encodings and content
types.

66

Chapter 11. Conclusion

Customisable Error pages

All the error messages produced by Apache can be customised.

Rewrites

Apache can automatically rewrite URLs. This can be particularly useful for en-
suring that old URLs continue to work following site reorganisation.

Header manipulation

Various facilities exist to control the HTTP headers that are sent with documents,
including control of document expiry, automatically adding cookies, etc.

Server-side includes

Documents can be automatically modified as they are served to include other
files, dynamic information such as the date, etc.

Proxying and Caching

Apache can be configured as an HTTP proxy, optionally also providing caching
facilities.

Server information

Additional modules allow the Apache server itself to be monitored in real time.

67

Appendix A. Apache modules

This lists the modules shipped with SLES’s packages.

Table A-1. Modules shipped as part of the base apache2 package.

Library Module name Description

mod_actions.so actions_module Run specific CGI programs
according to the MIME content
type of the object served.

mod_alias.so alias_module Override the DocumentRoot
directive for specific URLs.

mod_asis.so asis_module Allows the HTTP headers to be
in the file, rather than generated
automatically by the web
server.

mod_auth_basic.so auth_basic_module User authentication for access
control using HTTP basic
authentication

mod_auth_digest.so auth_digest_module Similar to auth_basic_module
but instead of using a plain text
authentication scheme, it uses a
cryptographic one.

mod_authn_alias.so authn_alias_module Allows extended authentication
providers to be created within
the configuration file and
assigned an alias name.

mod_authn_anon.so authn_anon_module Allows anonymous user access
and logs the password given.
Previously known
asauth_anon_module.

mod_authn_dbd.so authn_dbd_module Allows provides authentication
front-ends such as
auth_digest_module and
auth_basic_module to
authenticate users by looking
up users in SQL tables.

mod_authn_dbm.so authn_dbm_module Allows authentication
front-ends such as
auth_digest_module and
auth_basic_module to
authenticate users by looking
up users in dbm password files.
Previously known
asauth_dbm_module.

mod_authn_default.so authn_default_module Fallback authentication module
- it simply rejects any
credentials supplied by the user.

68

Appendix A. Apache modules

Library Module name Description

mod_authn_file.so authn_file_module Allows authentication
front-ends such as
auth_digest_module and
auth_basic_module to
authenticate users by looking
up users in plain text password
files. This function was
previously part of auth_module
and auth_digest_module.

mod_authnz_ldap.so authnz_ldap_module Allows authentication
front-ends such as
auth_basic_module to
authenticate users through an
ldap directory. Previously
known asauth_ldap_module.

mod_authz_dbm.so authz_dbm_module Group authorization using
DBM files. This function was
previously part of
auth_dbm_module.

mod_authz_default.so authz_default_module Fallback authorisation module -
it simply rejects any
authorization request.

mod_authz_groupfile.soauthz_groupfile_module Group authorization using
plaintext files. This function
was previously part of
auth_module.

mod_authz_host.so authz_host_module Access control by browser
hostname. Previously known
asaccess_module.

mod_authz_owner.so authz_owner_module Authorization based on file
ownership.

mod_authz_user.so authz_user_module Provides authorization
capabilities so that
authenticated users can be
allowed or denied access to
portions of the web site. This
function was previously part of
auth_module.

mod_autoindex.so autoindex_module Automatically generates
directory listings.

mod_cache.so
mod_disk_cache.so
mod_mem_cache.so

cache_module
disk_cache_module
mem_cache_module

Implements an RFC 2616
compliant HTTP content cache
that can be used to cache either
local or proxied content.

mod_cern_meta.so cern_meta_module An out-of-date way to specify
some headers.

mod_cgi.so cgi_module Run CGI programs.

mod_cgid.so cgid_module Run CGI programs using an
external CGI daemon.

mod_charset_lite.so charset_lite_module Specify character set translation
or recoding.

69

Appendix A. Apache modules

Library Module name Description

mod_dav.so
mod_dav_fs.so
mod_dav_lock.so

dav_module
dav_fs_module
dav_lock_module

Distributed Authoring and
Versioning functionality. (A
standard for remote authoring
and uploading.)

mod_dbd.so dbd_module Manages SQL database
connections.

mod_deflate.so deflate_module Compress content prior to
serving it.

mod_dir.so dir_module Supports the use of index.html
files for directory lookups.

mod_dumpio.so dumpio_module Dumps all I/O to error log as
desired..

mod_env.so env_module Changes the environment that
CGI program are run in.

mod_expires.so expires_module Autogenerates the Expires:
header according to user rules.

mod_ext_filter.so ext_filter_module Pass the response body through
an external program before
delivery to the client

mod_file_cache.so file_cache_module Caches a static list of files in
memory

mod_filter.so filter_module Context-sensitive smart filter
configuration module

mod_headers.so headers_module More general control of HTTP
headers.

mod_imagemap.so imagemap_module Server-side image maps.
Previously known as
imap_module

mod_include.so include_module Server-side includes.

mod_info.so info_module Lets the server report on its
configuration via a web request.

mod_ldap.so ldap_module LDAP connection pooling and
result caching services for use
by other LDAP modules.

mod_log_config.so log_config_module Configurable logging of
requests and reponses.

mod_log_forensic.so log_forensic_module Forensic Logging of the
requests made to the server.

mod_logio.so logio_module Logging of input and output
bytes per request.

mod_mime.so mime_module Determines MIME types based
on file names.

mod_mime_magic.so mime_magic_module Determines MIME types based
on file contents.

mod_negotiation.so negotiation_module Provides for content negotiation
between server and client.

70

Appendix A. Apache modules

Library Module name Description

mod_proxy.so proxy_module Lets your web server be a proxy.
Typically it needs additional
modules for specific protocols.

mod_proxy_ajp.so proxy_ajp_module AJP support module for
proxy_module.

mod_proxy_balancer.soproxy_balancer_module mod_proxy extension for load
balancing.

mod_proxy_connect.so proxy_connect_module Lets a proxying server handle
CONNECT requests.

mod_proxy_ftp.so proxy_ftp_module Lets a proxying server handle
FTP queries.

mod_proxy_http.so proxy_http_module Lets a proxying server handle
HTTP queries.

mod_rewrite.so rewrite_module Allows for very complex
rewriting of URLs before
responding to them.

mod_setenvif.so setenvif_module Sets the environment for CGI
programs based on properties
of the request.

mod_speling.so speling_module Attempts to correct misspelled
URLs.

mod_ssl.so ssl_module Strong cryptography using the
Secure Sockets Layer (SSL) and
Transport Layer Security (TLS)
protocols.

mod_status.so status_module Provides information about the
server’s current status via a web
request.

mod_suexec.so suexec_module Allows CGI scripts to run as a
user other than wwwrun.

mod_unique_id.so unique_id_module Provides a unique key in the
environment for each request.

mod_userdir.so userdir_module Allows for user’s to have web
pages from their home
directories.

mod_usertrack.so usertrack_module Provision of cookies.

mod_version.so version_module Version dependent
configuration.

mod_vhost_alias.so vhost_alias_module Allows for handling enormous
numbers of virtual hosts
without having to change the
configuration each time.

A number of other modules are available in other SLES packages that depend on
the apache2 package. Typically the package is named after the library. These are not
supported or maintained by the Apache group. The truly brave may care to wander
through the SLES “contributed” package sets for packages of Apache modules that
aren’t provided by Fedora at all. caveat administrator.

71

Appendix A. Apache modules

Table A-2. Modules shipped as part of other packages.

Package Library Module name

mod_auth_kerb mod_auth_kerb.so kerb_auth_module

mod_auth_mysql mod_auth_mysql.so mysql_auth_module

mod_auth_pgsql mod_auth_pgsql.so auth_pgsql_module

mod_authz_svn mod_authz_svn.so authz_svn_module

mod_dav_svn mod_dav_svn.so dav_svn_module

mod_perl mod_perl.so perl_module

mod_python mod_python.so python_module

php libphp4.so php4_module

72

Appendix B. Reference information for logging

Table B-1. Escape sequences for custom logs

%% How to get “%” in the log line. Why would you want to?

%a Client IP address

%A Server IP address. Recall that you may be running different
virtual hosts on different IP addresses.

%B Number of data bytes sent back. (i.e. excluding headers)

%b As for %B except that if the number is 0 then “-” is inserted
instead.

%{fubar}C The value of cookie fubar.

%D The number of microseconds it took to serve the query. See %T
below for a less accurate representation.

%{fubar}e The value of environment variable fubar when the query was
processed.

%f The name of the file whose contents were ultimately served back
to the client.

%H The request protocol. (Typically HTTP or HTTPS.)

%{fubar}i Value of the fubar header on the input query. See also %o below.

%l The remote userid, if provided by RFCnnnn.

%m The request method. Typically “GET” for our queries, but
occasionally “HEAD” if the browser is smart. It may be “POST”
for some CGI programs uploading data.

%{fubar}n A record of a “note” passed from one module to another. Not of
interest at our level.

%{fubar}o The value of header fubar in the outgoing response headers. See
also %i above.

%p The port number of the server. Typically 80.

%P The process ID of the child that serviced the query. Typically only
of use for debugging and trouble-shooting.

%q The query string component of the URL.

%r The first line of the query.

%>s The status code passed back to the client.

%t The time of the request in standard format.

%{format}t The time of the query in the format specified. See the manual
page for strftime for details of the format.

%T The time taken to service the query in seconds. See %D above for
more accuracy.

%u The userid used to authenticate to this page, if necessary.

%U The URL requested without the server name and protocol
elements and without any trailing query string.

%v The server name for the virtual host that was given the query.

HTTP (RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616.html)) is a very
subtle protocol with much more happening than you might expect from the sim-
ple stuff we have been covering. The following table lists all the status codes it has
and which might find themselves in your log files. In practise you will only see a tiny

73

Appendix B. Reference information for logging

subset of them.

Table B-2. HTTP status codes

100 Continue

101 Switching protocols

200 OK

201 Created

202 Accepted

203 Nonauthoritative information

204 No content

205 Reset content

206 Partial content

300 Multiple choices

301 Moved permanently

302 Found

303 See other

304 Not modified

305 Use proxy

307 Temporary redirect

400 Bad request

401 Unauthorized

402 Payment required

403 Forbidden

404 Not found

405 Method not allowed

406 Not acceptable

407 Proxy authentication required

408 Request time-out

409 Conflict

410 Gone

411 Length required

412 Precondition failed

413 Request entity too large

414 Request URI too large

415 Unsupported media type

416 Requested range not satisfiable

417 Expectation failed

500 Internal server error

501 Not implemented

502 Bad gateway

503 Service unavailable

504 Gateway timed out

74

Appendix B. Reference information for logging

505 HTTP version unsupported

75

	Web Server Management: Running Apache 2.2 under Linux
	Chapter 1. Installing the software
	Installing the packages
	Changes made to the system
	Quick and Dirty Web Server
	Apache documentation

	Chapter 2. The site's design
	The server we want
	One server, multiple 'virtual' hosts
	Structures of HTTP queries and responses
	HTTP Query Structure

	Chapter 3. Getting started
	The least we can get away with
	Syntax summary: Getting launched

	Virtual hosts
	Syntax summary: Virtual hosts

	Reloading the configuration
	Options to the startup script /etc/init.d/apache2

	Chapter 4. Supporting MIME types
	The ContentType: header
	MIME types on a SLES system
	Loading and using the MIME module
	Syntax summary: Loading modules
	Syntax summary: mimemodule

	Chapter 5. Setting Options
	Symbolic links
	Syntax Summary: The Options command
	Syntax Summary: Options for Symbolic Links

	Chapter 6. Handling directories
	The problem with directories
	Using default documents
	Syntax summary: dirmodule

	Automatic indexing of directories
	Basic listings
	Improving the listings
	Using an HTML table
	Summary of the autoindexing module
	Syntax summary: autoindexmodule
	Syntax summary: Options to IndexOptions

	Using both modules

	Chapter 7. Logging
	The error log
	Syntax summary: Error logging commands

	Access logs
	Four escape sequences
	The escape sequences used in the Common Log Format
	Additional escape sequences used in the Combined Log Format

	Log rotation
	/etc/logrotate.conf: commands
	/etc/logrotate.d/apache2: commands

	Chapter 8. Users' own web pages
	Chapter 9. Delegated control
	Customising only part of a web site
	Using Access Files
	Simple uses of AllowOverride

	Chapter 10. Access control
	Two posibilities
	Access control based on client IP address
	Syntax summary: Options on the Allow command

	Access control by client identity
	Syntax summary: implementing the valid user policy
	Syntax summary: Require

	Variations on a theme of user identification
	University of Cambridge 'Raven' authentication
	Syntax summary: implementing Raven

	Mix and match: Location and Authentication
	Blocking access to files

	Chapter 11. Conclusion
	A finished configuration file
	Followon web server courses
	Additional Apache features

	Appendix A. Apache modules
	Appendix B. Reference information for logging

